Properties of generalized semi-ideal-based zero-divisor graph of posets
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study properties of generalized semi-ideal-based zero-divisor graph structure of poset P, with respect to minimal elements of PI. We also investigate the interplay between the poset properties of P and the graph theoretic properties of GI(P)^.
@article{BASM_2018_3_a0,
     author = {K. Porselvi and B. Elavarasan},
     title = {Properties of generalized semi-ideal-based zero-divisor graph of posets},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--13},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a0/}
}
TY  - JOUR
AU  - K. Porselvi
AU  - B. Elavarasan
TI  - Properties of generalized semi-ideal-based zero-divisor graph of posets
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 3
EP  - 13
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a0/
LA  - en
ID  - BASM_2018_3_a0
ER  - 
%0 Journal Article
%A K. Porselvi
%A B. Elavarasan
%T Properties of generalized semi-ideal-based zero-divisor graph of posets
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 3-13
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a0/
%G en
%F BASM_2018_3_a0
K. Porselvi; B. Elavarasan. Properties of generalized semi-ideal-based zero-divisor graph of posets. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 3-13. https://geodesic-test.mathdoc.fr/item/BASM_2018_3_a0/

[1] Alizadeh M., Das A. K., Maimani H. R., Pournaki M. R., Yassemi S., “On the diameter and girth of zero-divisor graphs of posets”, Discrete Appl. Math., 2012, 1–6 | MR | Zbl

[2] Alizadeh M., Maimani H. R., Pournaki M. R., Yassemi S., “An ideal theoretic approach to complete partite zero-divisor graphs of posets”, J. Algebra Appl., 12:2 (2013) | DOI | MR

[3] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] Bondy J. A., Murty U. S. R., Graph theory with applications, North-Holland, Amsterdam, 1976 | MR

[5] Dheena P., Elavarasan B., “A generalized ideal based zero divisor graphs of near rings”, Commun. Korean Math. Soc., 24 (2009), 161–169 | DOI | MR | Zbl

[6] Elavarasan B., Porselvi K., “An ideal – based zero-divisor graph of posets”, Commun. Korean Math. Soc., 28:1 (2013), 79–85 | DOI | MR | Zbl

[7] Halaš R., “On extensions of ideals in posets”, Discrete Math., 308 (2008), 4972–4977 | DOI | MR | Zbl

[8] Halaš R., Jukl M., “On beck's coloring of posets”, Discrete Math., 309 (2009), 4584–4589 | DOI | MR | Zbl

[9] Joshi V., “Zero Divisor Graph of a Poset with Respect to an ideal”, Order, 29:3 (2012), 499–506 | DOI | MR | Zbl

[10] Joshi V., Waphare B. N., Pourali H. Y., “On generalized zero divisor graph of a poset”, Discrete Appl. Math., 161 (2013), 1490–1495 | DOI | MR | Zbl

[11] Munkres J. R., Topology, Prentice-Hall of Indian, New Delhi, 2005 | MR