General method for defining finite non-commutative associative algebras of dimension~m>1
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

General method for defining non-commutative finite associative algebras of arbitrary dimension m2 is discussed. General formulas describing local unit elements (the right-, left-, and bi-side ones), square roots of zero and zero divisors are derived. For arbitrary value m the single bi-side unit corresponds to every element of the algebra, except the square roots from zero. Various modifications of the multiplication operation can be assigned using different sets of the values of structural coefficients. It is proved that all of the modifications are mutually associative.
@article{BASM_2018_2_a7,
     author = {A. A. Moldovyan},
     title = {General method for defining finite non-commutative associative algebras of dimension~$m>1$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--100},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a7/}
}
TY  - JOUR
AU  - A. A. Moldovyan
TI  - General method for defining finite non-commutative associative algebras of dimension~$m>1$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 95
EP  - 100
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a7/
LA  - en
ID  - BASM_2018_2_a7
ER  - 
%0 Journal Article
%A A. A. Moldovyan
%T General method for defining finite non-commutative associative algebras of dimension~$m>1$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 95-100
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a7/
%G en
%F BASM_2018_2_a7
A. A. Moldovyan. General method for defining finite non-commutative associative algebras of dimension~$m>1$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 95-100. https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a7/

[1] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Cryptographic Algorithms on Groups and Algebras”, Journal of Mathematical Sciences, 223:5 (2017), 629–641 | DOI | MR | Zbl

[2] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public-Key Cryptoschemes”, Quasigroups and Related Systems, 18:2 (2010), 165–176 | MR | Zbl

[3] Moldovyan D. N., Moldovyan N. A., “Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms”, Quasigroups Related Systems, 18:2 (2010), 177–186 | MR | Zbl

[4] Moldovyan A. A., Moldovyan N. A., Shcherbacov V. A., “Non-commutative finite associative algebras of 2-dimensional vectors”, Computer Science Journal of Moldova, 25:3 (2017), 344–356 | MR | Zbl

[5] Moldovyan A. A., Moldovyan N. A., Shcherbacov V. A., “Non-commutative finite rings with several mutually associative multiplication operations”, The Fourth Conference of Mathematical Society of the Republic of Moldova, Dedicated to the centenary of Vladimir Andrunachievici, 1917–1997 (June 28 – July 2, 2017), Proceedings CMSM4, Chisinau, 2017, 133–136