Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known there are 2 types of isoheral tilings of the Euclidean plane with disks for the translation group $p1$. In the hyperbolic plane there exist a countable series of translation groups, each group being characterized by its genus. For the hyperbolic translation group of genus two, isohedral tilings of the hyperbolic plane with disks are studied. The technique of adjacency symbols, developed by B. N. Delone for the Euclidean case, is used. In the present article we restrict the enumeration to tilings with $8$-, $10$- and $12$-gons.
@article{BASM_2018_2_a5,
     author = {Elizaveta Zamorzaeva},
     title = {Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {74--84},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/}
}
TY  - JOUR
AU  - Elizaveta Zamorzaeva
TI  - Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 74
EP  - 84
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/
LA  - en
ID  - BASM_2018_2_a5
ER  - 
%0 Journal Article
%A Elizaveta Zamorzaeva
%T Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 74-84
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/
%G en
%F BASM_2018_2_a5
Elizaveta Zamorzaeva. Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 74-84. https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/

[1] Delone B. N., “Theory of planigons”, Izvestiya Akad. Nauk SSSR. Ser. Matem., 23:3 (1959), 365–386 (in Russian) | MR | Zbl

[2] Proc. Steklov Inst. Math., 4 (1980), 111–141 | MR | Zbl | Zbl

[3] Zamorzaeva E., “On isohedral tilings of hyperbolic manifolds”, Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, s. 1a, Matematică, 59:1 (1997), 81–88 | MR

[4] Zamorzaeva E. A., “On the classification of tilings on Riemann surfaces of genus two”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2000, no. 2, 39–50 | MR | Zbl

[5] Lučić Z., Molnár E., “Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups”, Archiv der Matematik, 54 (1990), 511–520 | MR

[6] Lučić Z., Molnár E., “Fundamental domains for planar discontinuous groups and uniform tilings”, Geom. Dedicata, 40 (1991), 125–143 | DOI | MR

[7] Huson D. H., “The generation and classification of tile-$k$-transitive tilings of the Euclidean plane, the sphere and the hyperbolic plane”, Geom. Dedicata, 47 (1993), 269–296 | DOI | MR | Zbl

[8] Grünbaum B., Shephard G. C., Tilings and Patterns, Freeman, New York, 1987 | MR | Zbl