Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2018_2_a5, author = {Elizaveta Zamorzaeva}, title = {Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {74--84}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/} }
TY - JOUR AU - Elizaveta Zamorzaeva TI - Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2018 SP - 74 EP - 84 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/ LA - en ID - BASM_2018_2_a5 ER -
%0 Journal Article %A Elizaveta Zamorzaeva %T Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2018 %P 74-84 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/ %G en %F BASM_2018_2_a5
Elizaveta Zamorzaeva. Isohedral tilings by $8$-, $10$- and $12$-gons for hyperbolic translation group of genus two. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 74-84. https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a5/
[1] Delone B. N., “Theory of planigons”, Izvestiya Akad. Nauk SSSR. Ser. Matem., 23:3 (1959), 365–386 (in Russian) | MR | Zbl
[2] Proc. Steklov Inst. Math., 4 (1980), 111–141 | MR | Zbl | Zbl
[3] Zamorzaeva E., “On isohedral tilings of hyperbolic manifolds”, Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, s. 1a, Matematică, 59:1 (1997), 81–88 | MR
[4] Zamorzaeva E. A., “On the classification of tilings on Riemann surfaces of genus two”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2000, no. 2, 39–50 | MR | Zbl
[5] Lučić Z., Molnár E., “Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups”, Archiv der Matematik, 54 (1990), 511–520 | MR
[6] Lučić Z., Molnár E., “Fundamental domains for planar discontinuous groups and uniform tilings”, Geom. Dedicata, 40 (1991), 125–143 | DOI | MR
[7] Huson D. H., “The generation and classification of tile-$k$-transitive tilings of the Euclidean plane, the sphere and the hyperbolic plane”, Geom. Dedicata, 47 (1993), 269–296 | DOI | MR | Zbl
[8] Grünbaum B., Shephard G. C., Tilings and Patterns, Freeman, New York, 1987 | MR | Zbl