On the solvability of a~class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 54-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a class of boundary value problems for systems of convolution type integral equations on the whole axis with power nonlinearity. These problems have a direct application in the p-adic theory of open-closed strings. We prove the existence of odd rolling solutions to the problems. We also establish the integral asymptotic for the constructed solutions. The results are illustrated by examples of the equations under consideration.
@article{BASM_2018_2_a4,
     author = {Kh. A. Khachatryan and S. M. Andriyan and A. A. Sisakyan},
     title = {On the solvability of a~class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {54--73},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a4/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - S. M. Andriyan
AU  - A. A. Sisakyan
TI  - On the solvability of a~class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 54
EP  - 73
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a4/
LA  - en
ID  - BASM_2018_2_a4
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A S. M. Andriyan
%A A. A. Sisakyan
%T On the solvability of a~class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 54-73
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a4/
%G en
%F BASM_2018_2_a4
Kh. A. Khachatryan; S. M. Andriyan; A. A. Sisakyan. On the solvability of a~class of boundary value problems for systems of the integral equations with power nonlinearity on the whole axis. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 54-73. https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a4/

[1] Volovich I. V., “$p$-Adic string”, Classical Quantum Gravity, 4:4 (1987), L83–L87 | DOI | MR

[2] Brekke Lee, Freund Peter G. O., Olson Mark, Witten Edward, “Non-Archimedean string dynamics”, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[3] Frampton Paul H., Okada Yasuhiro, “Effective scalar field theory of p-adic string”, Phys. Rev. D., 37:10 (1989), 3077–3079 | DOI | MR

[4] Brekke Lee, Freund Peter G. O., “$p$-Adic numbers in physics”, Physics Reports, 233:1 (1993), 1–66 | DOI | MR

[5] Moeller Nicolas, Schnabl Martin, “Tachyon condensation in open-closed $p$-adic string theory”, J. High Energy Phys., 2004:1 (2004), 011, 18 pp. | DOI | MR | Zbl

[6] Vladimirov V. S., “Nonlinear equations for p-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI | MR | Zbl

[7] Vladimirov V. S., “Nonexistence of solutions of the p-adic strings”, Theoret. and Math. Phys., 174:2 (2013), 178–185 | DOI | MR | Zbl

[8] Khachatryan Kh. A., “On solvability of one class of nonlinear integral equations on whole line with a weak singularity at zero”, P-Adic. Num. Ultrametr. Anal. Appl., 9:4 (2017), 292–305 | DOI | MR | Zbl

[9] Khachatryan Kh. A., “On the solvability of one boundary value problem in the theory of $p$-adic string”, Trans. Moscow Math. Soc., 79, no. 1, 2018 (in Russian) | DOI | MR

[10] Khachatryan Kh. A., “On the solvability of certain classes of nonlinear integral equations in the theory of $p$-adic string”, Izv. RAS, Ser. Math., 82:2 (2018), 172–193 (in Russian) | DOI | MR

[11] Khachatryan Kh. A., Terjyan Ts. E., Avetisyan M. O., “One-parameter family of bounded solutions for a system of non-linear integral equations on the whole line”, Izv. Nats. Akad. Nauk Armenii, Mat., 53:4 (2018) (in Russian)

[12] Kolmogorov A. N., Fomin V. C., Elements of the theory of functions and functional analysis, Fizmatlit, Moscow, 2004, 572 pp.

[13] Engibaryan N. B., “Renewal equations on the semi-axis”, Izv. Math., 63:1 (1999), 57–71 | DOI | MR | Zbl

[14] Arabadzhyan L. G., Khachatryan A. S., “A class of integral equations of convolution type”, Sb. Math., 198:7 (2007), 949–966 | DOI | MR | Zbl