Solution and full classification of generalized binary functional equations of the type~(3;3;0)
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 41-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized binary functional quasigroup equations in two individual variables with three appearances are under consideration. There exist five classes of the equations (two equations belong to the same class if there exists a relation between sets of their solutions). The quasigroup solution sets of equations from every class are given. In addition, it is proved that every parastrophe of a quasigroup has an orthogonal mate if the quasigroup has an orthogonal mate.
@article{BASM_2018_2_a3,
     author = {Halyna Krainichuk and Fedir Sokhatsky},
     title = {Solution and full classification of generalized binary functional equations of the type~$(3;3;0)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {41--53},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a3/}
}
TY  - JOUR
AU  - Halyna Krainichuk
AU  - Fedir Sokhatsky
TI  - Solution and full classification of generalized binary functional equations of the type~$(3;3;0)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 41
EP  - 53
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a3/
LA  - en
ID  - BASM_2018_2_a3
ER  - 
%0 Journal Article
%A Halyna Krainichuk
%A Fedir Sokhatsky
%T Solution and full classification of generalized binary functional equations of the type~$(3;3;0)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 41-53
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a3/
%G en
%F BASM_2018_2_a3
Halyna Krainichuk; Fedir Sokhatsky. Solution and full classification of generalized binary functional equations of the type~$(3;3;0)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 41-53. https://geodesic-test.mathdoc.fr/item/BASM_2018_2_a3/

[1] Aczél J., Lectures on functional equations and their applications, Academic press, New York–London, 1966 | MR | Zbl

[2] Aczél J., Belousov V. D., Hosszú M., “Generalized associativity and bisymmetry on quasigroups”, Acta. Math. Acad. Sci. Hung., 11:1–2 (1960), 127–136 | MR | Zbl

[3] Belousov V. D., “Balanced identities in quasigroups”, Mat. sbornik, 70(112):1 (1966), 55–97 (in Russian) | MR | Zbl

[4] Belousov V. D., “Cross isotopy of quasigroup”, Quasigroups and their systems, Stiintsa, Chishinau, 1990, 14–20 (in Russian)

[5] Belyavskaya G. B., Quasigroups: identities with permutations, linearity and nuclei, LAP Lambert Academic Publishing, 2013, 71 pp. (in Russian)

[6] Fryz I. V., Sokhatsky F. M., “book Block composition algorithm for constructing orthogonal $n$-ary operations”, Discrete mathematics, 340 (2017), 1957–1966 | DOI | MR | Zbl

[7] Keedwell Donald A., Dénes József, Latin Squares and their Applications, Second Edition, Copyright Elsevier, 2015, 440 pp. | MR

[8] Koval' R. F., Classification of functional equations of small length on quasigroup operations, Dissertation of PhD, 2005, 133 pp. (in Ukrainian)

[9] Krainichuk H. V., “Classification and solution of quasigroup functional equations of the type (4;2)”, Visnyk DonNU, Ser. A: Natural Sciences, 2015, no. 1–2, 53–63 (in Ukrainian)

[10] Krainichuk H. V., “Classification of quasigroup functional equations of the type (3;3;0)”, Visnyk DonNU, Ser. A: Natural Sciences, 2016, no. 1–2, 46–56 (in Ukrainian)

[11] Krapež A., “Generalized quadratic quasigroup equations with three variables”, Quasigroups and related systems, 17 (2009), 253–270 | MR | Zbl

[12] Krapež A., Živković D., “Parastrophically equivalent quasigroup equations”, Publications de L'Institut Mathematique, Nouvelle serie, 87:101 (2010), 39–58 | DOI | MR | Zbl

[13] Krapež A., Simić S. K., Tošić D. V., “Parastrophically uncancellable quasigroup equations”, Aequat. Mathem., 79 (2010), 261–280 | DOI | MR | Zbl

[14] Movsisyan Yu. M., “Hyperidentities and Related Concepts, I”, Arm. J. Math., 9:2 (2017), 146–222 | MR | Zbl

[15] Sade A., “Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens”, Ann. Soc. Sci. Bruxelles Sér. I, 74 (1960), 91–99 | MR | Zbl

[16] Sokhatsky F. M., “On classification of functional equations on quasigroups”, Ukrainian Math. J., 56:4 (2004), 1259–1266 | MR | Zbl

[17] Sokhatsky Fedir M., “On pseudoisomorphy and distributivity of quasigroups”, Bul. Acad. Ştiinçe Repub. Moldova, Mat., 2016, no. 2(81), 125–142 | MR | Zbl

[18] Sokhatsky F. M., “Symmetry in quasigroup theory”, Bull. of DonNU. Ser. A, Natural Sciences, 2016, no. 1–2, 70–83

[19] Sokhatsky F. M., Krainichuk H. V., “Solution of distributive-like quasigroup functional equations”, Comment. Math. Univer. Carol. (Praga), 53:3 (2012), 447–459 | MR | Zbl

[20] Shcherbacov V. A., Elements of Quasigroup Theory and Applications, Chapman and Hall/CRC, 2017 | MR

[21] Wanless I. M., “Transversals in Latin squares: a survey”, Surveys in combinatorics, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press., 2011, 403–437 | MR | Zbl