Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2018_1_a8, author = {Dimitru Cozma and Anatoli Dascalescu}, title = {Integrability conditions for a~class of cubic differential systems with a~bundle of two invariant straight lines and one invariant cubic}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {120--138}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a8/} }
TY - JOUR AU - Dimitru Cozma AU - Anatoli Dascalescu TI - Integrability conditions for a~class of cubic differential systems with a~bundle of two invariant straight lines and one invariant cubic JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2018 SP - 120 EP - 138 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a8/ LA - en ID - BASM_2018_1_a8 ER -
%0 Journal Article %A Dimitru Cozma %A Anatoli Dascalescu %T Integrability conditions for a~class of cubic differential systems with a~bundle of two invariant straight lines and one invariant cubic %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2018 %P 120-138 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a8/ %G en %F BASM_2018_1_a8
Dimitru Cozma; Anatoli Dascalescu. Integrability conditions for a~class of cubic differential systems with a~bundle of two invariant straight lines and one invariant cubic. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 120-138. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a8/
[1] Amel'kin V. V., Lukashevich N. A., Sadovskii A. P., Non-linear oscillations in the systems of second order, Belarusian University Press, Belarus, 1982 (in Russian)
[2] Transl. Amer. Math. Soc., 100:1 (1954), 397–413 | MR | Zbl | Zbl
[3] Bondar Y. L., Sadovskii A. P., “Variety of the center and limit cycles of a cubic system, which is reduced to Lienard form”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2004, no. 3(46), 71–90 | MR | Zbl
[4] Chavarriga J., Giné J., “Integrability of cubic systems with degenerate infinity”, Differential Equations and Dynamical Systems, 6:4 (1998), 425–438 | MR | Zbl
[5] Cozma D., Şubă A., “The solution of the problem of center for cubic differential systems with four invariant straight lines”, Scientific Annals of the “Al. I. Cuza” University. Mathematics, 44, suppl. (1998), 517–530 | MR | Zbl
[6] Cozma D., “The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic”, Nonlinear Differ. Equ. and Appl., 16 (2009), 213–234 | DOI | MR | Zbl
[7] Cozma D., “The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic”, Annals of Differential Equations, 30:4 (2010), 385–399 | MR
[8] Cozma D., “Center problem for cubic systems with a bundle of two invariant straight lines and one invariant conic”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2012, no. 1(68), 32–49 | MR | Zbl
[9] Cozma D., Integrability of cubic systems with invariant straight lines and invariant conics, Ştiinţa, Chişinău, 2013 | MR
[10] Cozma D., “Darboux integrability and rational reversibility in cubic systems with two invariant straight lines”, Electronic Journal of Differential Equations, 2013 (2013), 23, 19 pp. | MR
[11] Cozma D., “The problem of the center for cubic systems with two parallel invariant straight lines and one invariant cubic”, ROMAI Journal, 11:2 (2015), 63–75 | MR
[12] Cozma D., “Center conditions for a cubic differential system with a bundle of two invariant straight lines and one invariant cubic”, ROMAI Journal, 13:2 (2017) (to appear)
[13] Lloyd N. G., Pearson J. M., “A cubic differential system with nine limit cycles”, Journal of Applied Analysis and Computation, 2:3 (2012), 293–304 | MR | Zbl
[14] Lloyd N. G., Pearson J. M., “Centres and limit cycles for an extended Kukles system”, Electronic Journal of Differential Equations, 2007 (2007), 119, 23 pp. | MR | Zbl
[15] Lyapunov A. M., The general problem of stability of motion, Gostekhizdat, Moscow, 1950 (in Russian) | MR | Zbl
[16] Han M., Romanovski V., Zhang X., “Integrability of a family of 2-dim cubic systems with degenerate infinity”, Rom. Journ. Phys., 61:1–2 (2016), 157–166
[17] Popa M. N., Pricop V. V., “Applications of algebraic methods in solving the center-focus problem”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2013, no. 1(71), 45–71 | MR | Zbl
[18] Sadovskii A. P., Shcheglova T. V., “Solution of the center-focus problem for a nine-parameter cubic system”, Differential Equations, 47:2 (2011), 208–223 | DOI | MR | Zbl
[19] Schlomiuk D., “Algebraic and geometric aspects of the theory of polynomial vector fields”, Bifurcations and periodic orbits of vector fields, Kluwer Academic Publishes, 1993, 429–467 | DOI | MR | Zbl
[20] Şubă A., “Partial integrals, integrability and the center problem”, Differential Equations, 32:7 (1996), 884–892 | MR
[21] Şubă A., Vacaraş O., “Cubic differential systems with an invariant straight line of maximal multiplicity”, Annals of the University of Craiova. Mathematics and Computer Science Series, 42:2 (2015), 427–449 | MR | Zbl
[22] Żoła̧dek H., “On certain generalization of the Bautin's theorem”, Nonlinearity, 7 (1994), 273–279 | DOI | MR