Distances on free semigroups and their applications
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 92-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that for any quasimetric d on a set X with a base-point pX there exists a maximal invariant extension ρ^ on the free monoid Fa(X,V) in a non-Burnside quasi-variety V of topological monoids (Theorem 6.1). This fact permits to prove that for any non-Burnside quasi-variety V of topological monoids and any T0-space X the free topological monoid F(X,V) exists and is abstract free (Theorem 7.1). Corollary 10.2 affirms that F(X,V), where V is a non-trivial complete non-Burnside quasi-variety of topological monoids, is a topological digital space if and only if X is a topological digital space.
@article{BASM_2018_1_a7,
     author = {M. M. Choban and I. A. Budanaev},
     title = {Distances on free semigroups and their applications},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {92--119},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a7/}
}
TY  - JOUR
AU  - M. M. Choban
AU  - I. A. Budanaev
TI  - Distances on free semigroups and their applications
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 92
EP  - 119
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a7/
LA  - en
ID  - BASM_2018_1_a7
ER  - 
%0 Journal Article
%A M. M. Choban
%A I. A. Budanaev
%T Distances on free semigroups and their applications
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 92-119
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a7/
%G en
%F BASM_2018_1_a7
M. M. Choban; I. A. Budanaev. Distances on free semigroups and their applications. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 92-119. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a7/

[1] Arenas F. G., “Alexandroff spaces”, Acta Math. Univ. Comenianae, 68:1 (1999), 17–25 | MR | Zbl

[2] Alexandroff P., “Diskrete Räume”, Mat. Sb., 2 (1937), 501–519 (in German) | Zbl

[3] Alexandroff P., Urysohn P., “Une condition nécésare et suffisante pour qu'une classe (L) soit une classe (D)”, C. R. Acad. Paris, 177 (1923), 1274–1276 | Zbl

[4] Alexandroff P., Urysohn P., “Mémoire sur les espaces topologiques compacts”, Verh. Akad. Wetensch. Afd. Naturk. Sect. I (Amsterdam), 14 (1929), 1–96

[5] Russian Math. Surveys, 21:4, 115–162 | DOI | MR | Zbl

[6] Arhangel'skii A. V., Tkachenko M. G., Topological groups and related structures, Atlantis Press, Amsterdam–Paris, 2008 | Zbl

[7] Berinde V., Choban M. M., “Generalized distances and their associate metrics. Impact on fixed point theory”, Creat. Math. Inform., 22:1 (2013), 23–32 | MR | Zbl

[8] Birkhoff G., “A Note on Topological Groups”, Compositio mathematica, 3 (1936), 427–430 | MR | Zbl

[9] Chittenden E. W., “On the equivalence of écart and voisinage”, Trans. Amer. Math. Soc., 18 (1917), 161–166 | MR | Zbl

[10] Trudy Mosk. Matem. Ob-va, 48, 1985, 106–149 | MR | Zbl

[11] Choban M. M., “The theory of stable metrics”, Math. Balkanica, 2 (1988), 357–373 | MR | Zbl

[12] Choban M. M., “General conditions of the existence of free algebras”, Acta Comment. Univ. Tartuensis, 836 (1989), 157–171 | MR

[13] Choban M. M., “Some topics in topological algebra”, Topol. Appl., 54 (1993), 183–202 | DOI | MR | Zbl

[14] Choban M. M., Budanaev I. A., “Distances on Monoids of Strings and Their Applications”, Proceedings of the Conference on Mathematical Foundations of Informatics MFOI2016 (July 25–29, 2016), Chisinau, Republic of Moldova, 2016, 144–159 | MR

[15] Choban M. M., Budanaev I. A., “About Applications of Distances on Monoids of Strings”, Computer Science Journal of Moldova, 24:3(72) (2016), 335–356 | MR | Zbl

[16] Choban M. M., Chiriac L. L., “Selected problems and results of topological algebra”, ROMAI J., 9:1 (2013), 1–25 | MR | Zbl

[17] Choban M. M., Chiriac L. L., “On free groups in classes of groups with topologies”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2013, no. 2(72)–3(73), 61–79 | Zbl

[18] Dumitrascu S. S., Choban M. M., “On free topological algebras with a continuous signature”, Algebraic and topological systems, Matem. Issledovania, 65, 1982, 27–54 | MR

[19] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[20] Frink A. H., “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43 (1937), 133–142 | DOI | MR | Zbl

[21] Izvestia Akad. Nauk SSSR, 12:3 (1948), 279–323 | MR | Zbl

[22] Graev M. I., “Theory of topological groups I. Norms and metrics on groups. Complete groups. Free topological groups”, Uspehi Matem. Nauk, 5:2(36) (1950), 3–56 (in Russian) | MR | Zbl

[23] Herman G. T., Geometry of Digital Spaces, Birkhäuser, 1998 | MR | Zbl

[24] Hofmann K. H., Lawson J. D., Pym J. S., The analytical and topological theory of semigroups, de Gruyter, 1990 | MR | Zbl

[25] James L. M., “Multiplications on spheres, I”, Proceed. Amer. Mat. Soc., 13 (1957), 192–196 | MR

[26] James L. M., “Multiplications on spheres, II”, Trans. Amer. Math. Soc., 84 (1957), 545–548 | MR

[27] Kakutani Sh., “Free topological groups and infinite direct product topological groups”, Proceed. Imp. Acad. Tokyo, 20 (1944), 595–598 | DOI | MR | Zbl

[28] Kakutani Sh., “Über die Metrisation der topologischen Gruppen”, Proc. Imp. Acad. Japan, 12 (1936), 82–84 | DOI | MR | Zbl

[29] Kakutani Sh., “Free topological groups and infinite direct product topological groups”, Proc. Imp. Acad. Tokyo, 20 (1944), 595–598 | DOI | MR | Zbl

[30] Khalimsky E., “Topological structures in computer science”, Journal of Applied Math. and Simulation, 1:1 (1987), 25–40 | DOI | MR | Zbl

[31] Khalimsky E., Kopperman R., Meyer P. R., “Computer graphics and connected topologies on finite ordered sets”, Topol. Appl., 36 (1990), 1–17 | DOI | MR | Zbl

[32] Soviet Physics Doklady, 10:8, 707–710 | MR | Zbl

[33] Izvestia Akad. Nauk SSSR, 21:2 (1957), 171–198 | MR | MR | Zbl | Zbl

[34] Mostert P. S., “The structure of topological semigroups – revisited”, Bull. Amer. Math. Soc., 72:4 (1966), 601–618 | DOI | MR | Zbl

[35] Mukherjea A., Tserpes N., Measures on topological semigroups, Lect. notes in math., 547, Springer, 1976 | DOI | Zbl

[36] Trans. Moscow Math. Soc., 24, 1974, 213–247 | MR | Zbl | Zbl

[37] Moscow University Mathematics Bulletin, 27:1–2 (1973), 5–9 | MR | Zbl | Zbl

[38] Moscow University Mathematics Bulletin, 27:1–2 (1973), 65–70 | MR | Zbl | Zbl

[39] Moscow University Mathematics Bulletin, 27:3–4 (1973), 7–11 | MR | Zbl | Zbl

[40] Niemytzki V., “On the third axiom of metric spaces”, Trans Amer. Math. Soc., 29 (1927), 507–513 | MR | Zbl

[41] Niemytzki V., “Über die Axiome des metrischen Raumes”, Math. Ann., 104 (1931), 666–671 | DOI | MR | Zbl

[42] Romaguera S., Sanchis M., Tkachenko M., “Free paratopological groups”, Topology Proceed., 27:2 (2003), 613–640 | MR | Zbl

[43] Ruppert W. A. F., Compact semitopological semigroups: an intrinsic theory, Lect. notes in math., 1079, Springer, 1984 | DOI | MR | Zbl

[44] Swierczkowski S., “Topologies in free algebras”, Proceed. London Math. Soc., 15:55 (1964), 566–576 | DOI | MR

[45] Wallace A. D., “The structure of topological semigroups”, Bull. Amer. Math. Soc., 61:2 (1955), 95–112 | DOI | MR | Zbl