Quartic differential systems with an invariant straight line of maximal multiplicity
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 76-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we show that in the class of quartic differential systems the maximal algebraic multiplicity Ma of an invariant straight line is equal to 10.
@article{BASM_2018_1_a6,
     author = {Alexandru \c{S}ub\u{a} and Olga Vacara\c{s}},
     title = {Quartic differential systems with an invariant straight line of maximal multiplicity},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--91},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a6/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Olga Vacaraş
TI  - Quartic differential systems with an invariant straight line of maximal multiplicity
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 76
EP  - 91
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a6/
LA  - en
ID  - BASM_2018_1_a6
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Olga Vacaraş
%T Quartic differential systems with an invariant straight line of maximal multiplicity
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 76-91
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a6/
%G en
%F BASM_2018_1_a6
Alexandru Şubă; Olga Vacaraş. Quartic differential systems with an invariant straight line of maximal multiplicity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 76-91. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a6/

[1] Artes J., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific J. of Math., 184:2 (1998), 207–230 | DOI | MR | Zbl

[2] Artes J., Llibre J., “On the number of slopes of invariant straight lines for polynomial differential systems”, J. of Nanjing University, 13 (1996), 143–149 | MR | Zbl

[3] Christopher C., Llibre J., Pereira J. V., “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific J. of Math., 329:1 (2007), 63–117 | DOI | MR

[4] Şubă A., Vacaraş O., “Cubic differential systems with an invariant straight line of maximal multiplicity”, Annals of the University of Craiova. Mathematics and Computer Science Series, 42:2 (2015), 427–449 | MR | Zbl