Properties of finite unrefinable chains of ring topologies for nilpotent rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let R be a nilpotent ring and let (M,) be the lattice of all ring topologies or the lattice of all ring topologies in each of which the ring R possesses a basis of neighborhoods of zero consisting of subgroups. If τ0Mτ1MMτn is an unrefinable chain of ring topologies from M and τM, then kn for any chain sup{τ,τ0}=τ1τ2τk=sup{τ,τn} of topologies from M.
@article{BASM_2018_1_a5,
     author = {V. I. Arnautov and G. N. Ermakova},
     title = {Properties of finite unrefinable chains of ring topologies for nilpotent rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--75},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a5/}
}
TY  - JOUR
AU  - V. I. Arnautov
AU  - G. N. Ermakova
TI  - Properties of finite unrefinable chains of ring topologies for nilpotent rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 67
EP  - 75
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a5/
LA  - en
ID  - BASM_2018_1_a5
ER  - 
%0 Journal Article
%A V. I. Arnautov
%A G. N. Ermakova
%T Properties of finite unrefinable chains of ring topologies for nilpotent rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 67-75
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a5/
%G en
%F BASM_2018_1_a5
V. I. Arnautov; G. N. Ermakova. Properties of finite unrefinable chains of ring topologies for nilpotent rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 67-75. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a5/

[1] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, inc., New York–Basel–Hong Kong, 1996 | MR | Zbl

[2] Arnautov V. I., Topala A. Gh., “An example of ring with non-modular lattice of ring topologies”, Buletinul A.Ş.R.M. Matematica, 1998, no. 2(27), 130–131 | MR | Zbl

[3] Birkhoff G., Lattice theory, Nauka, Moscow, 1984 (in Russian) | MR

[4] Arnautov V. I., “Properties of final unrefinable chains of groups topologies”, Bul. Acad. Repub. Moldova. Matematica, 2010, no. 2(63), 3–19 | MR | Zbl

[5] Grätzer G., General lattice theory, Mir, Moscow, 1982 (in Russian) | MR | Zbl

[6] Kurosh A. G., Lectures on general algebra, Moscow, 2007 (in Russian) | MR

[7] Smarda B., “The lattice of topologies of topological $l$-group”, Czechosl. Math. Jour., 26:101 (1976), 128–136 | MR | Zbl

[8] Arnautov V. I., “Svoystva konechnyh neuplotniaemyh tzepochek kolitzevyh topologiy”, Fundamentalinaia i prikladnaia matematika (Moscow), 16:8 (2010), 5–16 (in Russian) | MR

[9] Arnautov V. I., Ermakova G. N., “Unrefinable chains when taking the infimum in the lattice of ring topologies for a nilpotent ring”, Bul. Acad. Repub. Moldova. Matematica, 2017, no. 2(84), 71–76 | MR | Zbl