The center of the lattice of factorization structures
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 50-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The center of the lattice of factorization structures of the category of locally convex topological vector spaces is studied. The center consists of those structures for which the projections class is contained in the class of universal epimorphisms. The injective class is contained in the class of universal monomorphisms. It is proved that every element of the center defines two commuting functors: a coreflector and a reflector functor. The relationships of these pair of functors with left and right products of two subcategories and with the theories of relative torsion are examined. Some concrete examples are constructed.
@article{BASM_2018_1_a4,
     author = {Dimitru Botnaru and Elena Bae\c{s}},
     title = {The center of the lattice of factorization structures},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--66},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a4/}
}
TY  - JOUR
AU  - Dimitru Botnaru
AU  - Elena Baeş
TI  - The center of the lattice of factorization structures
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 50
EP  - 66
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a4/
LA  - en
ID  - BASM_2018_1_a4
ER  - 
%0 Journal Article
%A Dimitru Botnaru
%A Elena Baeş
%T The center of the lattice of factorization structures
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 50-66
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a4/
%G en
%F BASM_2018_1_a4
Dimitru Botnaru; Elena Baeş. The center of the lattice of factorization structures. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 50-66. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a4/

[1] Adamek J., Herrlich H., Strecker G. S., Abstract and concrete categories, Boston, 2005, 524 pp. | MR

[2] Botnaru D. V., “Relative torsion theories for a category of separable locally convex spaces”, Algebry i Kol'tsa, Mat. Issled., 90, 1986, 28–40 (in Russian) | MR | Zbl

[3] Botnaru D., “Structures bicatégorielles complémentaires”, ROMAI Journal, 5:2 (2009), 5–27 | MR | Zbl

[4] Botnaru D., Ţurcanu A., “Les produits de gauche et de droit de deux souscategories”, Acta et Com. Chişinău, 3 (2003), 57–73

[5] Botnaru D., Ţurcanu A., “On Giraud subcategories in locally convex space”, ROMAI Journal, 1:1 (2005), 7–30 | MR | Zbl

[6] Botnaru D., Ţurcanu A., “On the right product of two subcategories”, The 20-th Conference On Applied and Industrial Math (CAIM – 2012), 40–43 | MR | Zbl

[7] Grothendieck A., Topological vector spaces, Gordon and Breach, New York–London–Paris, 1973, 245 pp. | MR

[8] Isbell J. R., Uniform spaces, Math. Surveys, 12, AMS, Providence, Rhode Island, 1964, 175 pp. | MR | Zbl

[9] Huşek M., Rice M. D., “Productivity of coreflective subcategories of Unif”, Gen. Top. Appl., 9:3 (1978), 295–306 | DOI | MR

[10] Rice M. D., “Metric uniform spaces”, J. London Math. Soc., 11:1 (1975), 53–64 | DOI | MR | Zbl

[11] Robertson A. P., Robertson W. J., Topological vector spaces, University Press, Cambridge, 1964 | MR | Zbl

[12] Schaefer H. H., Topological vector spaces, Berlin–Heidelberg–New York, 1973 | MR