Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2018_1_a2, author = {Iryna Fryz}, title = {Orthogonality and retract orthogonality of operations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {24--33}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/} }
Iryna Fryz. Orthogonality and retract orthogonality of operations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 24-33. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/
[1] Belyavskaya G., Mullen G. L., “Orthogonal hypercubes and $n$-ary operations”, Quasigroups Related Systems, 13:1 (2005), 73–86 | MR | Zbl
[2] Gonzalez S., Couselo E., Markov V., Nechaev A., “Recursive MDS-codes and recursively differentiable quasigroups”, Discrete Math. Appl., 8:3 (1998), 217–245 | DOI | MR | Zbl
[3] Dougherty S. T., Szczepanski T. A., “Latin $k$-hypercubes”, Australas. J. Combin., 40 (2008), 145–160 | MR | Zbl
[4] Ethier J. T., Mullen G. L., “Strong forms of orthogonality for sets of hypercubes”, Discrete Math., 312 (2012), 2050–2061 | DOI | MR | Zbl
[5] Evans T., “The construction of orthogonal $k$-skeins and latin $k$-cubes”, Aequationes Math., 14:3 (1976), 485–491 | DOI | MR | Zbl
[6] Trenkler M., “On orthogonal latin $p$-dimensional cubes”, Czechoslovak Math. J., 55(130) (2005), 725–728 | DOI | MR | Zbl
[7] Fryz I. V., Sokhatsky F. M., “Block composition algorithm for constructing orthogonal $n$-ary operations”, Discrete Math., 340 (2017), 1957–1966 | DOI | MR | Zbl
[8] Soedarmadji E., “Latin hypercubes and MDS-codes”, Discrete Math., 306 (2006), 1232–1239 | DOI | MR | Zbl
[9] Keedwell A. D., Denes J., Latin Squares and their Applications, Second edition, North Holland, Amsterdam, 2015, 438 pp. | MR
[10] Sokhatskyj F., Syvakivskyj P., “On linear isotopes of cyclic groups”, Quasigroups Related Systems, 1:1 (1994), 66–76 | MR