Orthogonality and retract orthogonality of operations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 24-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study connections between orthogonality and retract orthogonality of operations. We prove that if a tuple of operations is retractly orthogonal, then it is orthogonal. However, orthogonality of operations doesn't provide their retract orthogonality. Consequently, every k-tuple of orthogonal k-ary operations is prolongable to a k-tuple of orthogonal n-ary operations. Also, we give some specifications for central quasigroups. In particular for central quasigroups over finite field of prime order, retract orthogonality is the necessary and sufficient condition for orthogonality. The problem of coincidence of orthogonality and retract orthogonality remains open.
@article{BASM_2018_1_a2,
     author = {Iryna Fryz},
     title = {Orthogonality and retract orthogonality of operations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {24--33},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/}
}
TY  - JOUR
AU  - Iryna Fryz
TI  - Orthogonality and retract orthogonality of operations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 24
EP  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/
LA  - en
ID  - BASM_2018_1_a2
ER  - 
%0 Journal Article
%A Iryna Fryz
%T Orthogonality and retract orthogonality of operations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 24-33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/
%G en
%F BASM_2018_1_a2
Iryna Fryz. Orthogonality and retract orthogonality of operations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 24-33. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a2/

[1] Belyavskaya G., Mullen G. L., “Orthogonal hypercubes and $n$-ary operations”, Quasigroups Related Systems, 13:1 (2005), 73–86 | MR | Zbl

[2] Gonzalez S., Couselo E., Markov V., Nechaev A., “Recursive MDS-codes and recursively differentiable quasigroups”, Discrete Math. Appl., 8:3 (1998), 217–245 | DOI | MR | Zbl

[3] Dougherty S. T., Szczepanski T. A., “Latin $k$-hypercubes”, Australas. J. Combin., 40 (2008), 145–160 | MR | Zbl

[4] Ethier J. T., Mullen G. L., “Strong forms of orthogonality for sets of hypercubes”, Discrete Math., 312 (2012), 2050–2061 | DOI | MR | Zbl

[5] Evans T., “The construction of orthogonal $k$-skeins and latin $k$-cubes”, Aequationes Math., 14:3 (1976), 485–491 | DOI | MR | Zbl

[6] Trenkler M., “On orthogonal latin $p$-dimensional cubes”, Czechoslovak Math. J., 55(130) (2005), 725–728 | DOI | MR | Zbl

[7] Fryz I. V., Sokhatsky F. M., “Block composition algorithm for constructing orthogonal $n$-ary operations”, Discrete Math., 340 (2017), 1957–1966 | DOI | MR | Zbl

[8] Soedarmadji E., “Latin hypercubes and MDS-codes”, Discrete Math., 306 (2006), 1232–1239 | DOI | MR | Zbl

[9] Keedwell A. D., Denes J., Latin Squares and their Applications, Second edition, North Holland, Amsterdam, 2015, 438 pp. | MR

[10] Sokhatskyj F., Syvakivskyj P., “On linear isotopes of cyclic groups”, Quasigroups Related Systems, 1:1 (1994), 66–76 | MR