Semi-integral filters and semi-integral BL-algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 12-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduced the concepts of semi-integral filters and semi-integral BL-algebras. With respect to these concepts, we give some related results. In particular, we give some relations among semi-integral BL-algebras, integral BL-algebras and local BL-algebra. Also, we give some relations among semi-integral filters and other types of filters in BL-algebras, such as prime, maximal, primary, perfect, normal, positive implicative and obstinate filters.
@article{BASM_2018_1_a1,
     author = {Somayeh Motamed},
     title = {Semi-integral filters and semi-integral $BL$-algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {12--23},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a1/}
}
TY  - JOUR
AU  - Somayeh Motamed
TI  - Semi-integral filters and semi-integral $BL$-algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 12
EP  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a1/
LA  - en
ID  - BASM_2018_1_a1
ER  - 
%0 Journal Article
%A Somayeh Motamed
%T Semi-integral filters and semi-integral $BL$-algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 12-23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a1/
%G en
%F BASM_2018_1_a1
Somayeh Motamed. Semi-integral filters and semi-integral $BL$-algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 12-23. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a1/

[1] Borumand Saeid A., Motamed S., “Normal filters in $BL$-algebras”, World Applied Sci. J., 7, Special Issue Appl. Math. (2009), 70–76

[2] Borumand Saeid A., Motamed S., “A new filter in $BL$-algebras”, Journal of Intelligent and Fuzzy Systems, 27 (2014), 2949–2957 | MR | Zbl

[3] Borzooei R. A., Paad A., “Integral filters and integral $BL$-Algebras”, Italian Journal of Pure and Applied Mathematics, 30 (2013), 303–316 | MR | Zbl

[4] Busneag D., Piciu D., “$BL$-algebra of fractions relative to an $\wedge$-closed system”, Analele Stiintifice ale Universitatii Ovidius Constanta. Seria Matematica, 11:1 (2003), 39–48 | MR

[5] Busneag D., Piciu D., “On the lattice of deductive systems of a $BL$-algebra”, Central European Journal of Mathematics, 1:2 (2003), 221–237 | DOI | MR | Zbl

[6] Hájek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl

[7] Haveshki M., Borumand Saeid A., Eslami E., “Some types of filters in $BL$-algebras”, Soft Computing, 10 (2006), 657–664 | DOI | Zbl

[8] Motamed S., Torkzadeh L., “Primary decomposition of filters in $BL$-algebras”, Afr. Mat., 24:4 (2013), 725–737 | DOI | MR | Zbl

[9] Motamed S., Torkzadeh L., Borumand Saeid A., Mohtashamnia N., “Radical of Filters in $BL$-algebras”, Math. Log. Quart., 57:2 (2011), 166–179 | DOI | MR | Zbl

[10] Paad A., “Relation between (fuzzy) godel ideals and (fuzzy) boolean ideals in $BL$-algebras”, Discussiones Mathematicae General Algebra and Applications, 36 (2016), 45–58 | DOI | MR

[11] Turunen E., “$BL$-algebras of basic fuzzy logic”, Mathware and Soft Computing, 6 (1999), 49–61 | MR | Zbl

[12] Turunen E., Mathematics behind fuzzy logic, Physica-Verlag, 1999 | MR | Zbl