Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2018_1_a0, author = {P. S. Gevorgyan and I. Pop}, title = {Shape dimension of maps}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--11}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a0/} }
P. S. Gevorgyan; I. Pop. Shape dimension of maps. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 3-11. https://geodesic-test.mathdoc.fr/item/BASM_2018_1_a0/
[1] Borsuk K., “Concerning the notion of the shape of compact”, Proc. Intern. Symp. on Top. and its Appl. (Herceg-Novi, 1968), Savez Društava Mat., Fiz. i Astronom., Beograd, 1969, 98–104 | MR
[2] Borsuk K., Theory of shape, Lecture Notes Series, 28, Matematisk Ins. Aarhus Univ., 1971 | MR | Zbl
[3] Dydak J., “Some remarks concerning the Whithead theorem in shape theory”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 437–445 | MR | Zbl
[4] Gevorgyan P. S., Pop I., “Movability and Uniform Movability of Shape Morphisms”, Bulletin of the Polish Academy of Sciences. Mathematics, 64 (2016), 69–83 | MR | Zbl
[5] Gevorgyan P. S., Pop I., “On the $n$-movability of maps”, Topology and its Applications, 221 (2017), 309–325 | DOI | MR | Zbl
[6] Mardešić S., Segal J., Shape Theory. The Inverse System Approach, North-Holand, 1982 | MR | Zbl
[7] Nowak S., “Some properties of fundamental dimension”, Fund. Math., 85 (1974), 211–227 | DOI | MR | Zbl