Some estimates for angular derivative at the boundary
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish lower estimates for the modulus of the values of f(z) on boundary of unit disc. For the function f(z)=1+c1z+c2z2+ defined in the unit disc such that f(z)N(β) assuming the existence of angular limit at the boundary point b, the estimations below of the modulus of angular derivative have been obtained at the boundary point b with f(b)=β. Moreover, Schwarz lemma for class N(β) is given. The sharpness of these inequalities has been proved.
@article{BASM_2017_3_a9,
     author = {B\"ulent Nafi \"Ornek},
     title = {Some estimates for angular derivative at the boundary},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {120--134},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a9/}
}
TY  - JOUR
AU  - Bülent Nafi Örnek
TI  - Some estimates for angular derivative at the boundary
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 120
EP  - 134
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a9/
LA  - en
ID  - BASM_2017_3_a9
ER  - 
%0 Journal Article
%A Bülent Nafi Örnek
%T Some estimates for angular derivative at the boundary
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 120-134
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a9/
%G en
%F BASM_2017_3_a9
Bülent Nafi Örnek. Some estimates for angular derivative at the boundary. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 120-134. https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a9/

[1] Aliyev Azeroğlu T., Örnek B. N., “A refined Schwarz inequality on the boundary”, Complex Variables and Elliptic Equations, 58 (2013), 571–577 | DOI | MR | Zbl

[2] Boas H. P., “Julius and Julia: Mastering the Art of the Schwarz lemma”, Amer. Math. Monthly, 117 (2010), 770–785 | DOI | MR | Zbl

[3] Chelst D., “A generalized Schwarz lemma at the boundary”, Proc. Amer. Math. Soc., 129 (2001), 3275–3278 | DOI | MR | Zbl

[4] Dubinin V. N., “The Schwarz inequality on the boundary for functions regular in the disc”, J. Math. Sci., 122 (2004), 3623–3629 | DOI | MR | Zbl

[5] Dubinin V. N., “Bounded holomorphic functions covering no concentric circles”, J. Math. Sci., 207 (2015), 825–831 | DOI | MR | Zbl

[6] Golusin G. M., Geometric Theory of Functions of Complex Variable, 2nd edn., Moscow, 1966 (in Russian) | MR

[7] Jeong M., “The Schwarz lemma and its applications at a boundary point”, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21 (2014), 275–284 | MR

[8] Jeong M., “The Schwarz lemma and boundary fixed points”, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18 (2011), 219–227 | MR

[9] Krantz S. G., Burns D. M., “Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary”, J. Amer. Math. Soc., 7 (1994), 661–676 | DOI | MR | Zbl

[10] Liu T., Tang X., “The Schwarz Lemma at the Boundary of the Egg Domain $B_{p_1,p_2}$ in $\mathbb C^n$”, Canad. Math. Bull., 58 (2015), 381–392 | DOI | MR | Zbl

[11] Lu J., Tang X., Liu T., “Schwarz lemma at the boundary of the unit polydisk in $\mathbb C^n$”, Sci. China Math., 58 (2015), 1–14 | MR

[12] Mateljević M., “Schwarz lemma, the Carathéodory and Kobayashi Metrics and Applications in Complex Analysis”, XIX Geometrical Seminar, At Zlatibor, 2016, 1–12

[13] Mateljević M., Hyperbolic geometry and Schwarz lemma, ResearchGate, 2016

[14] Mateljević M., “Ahlfors–Schwarz lemma and curvature”, Kragujevac J. Math., 25 (2003), 155–164 | MR | Zbl

[15] Mateljević M., Note on Rigidity of Holomorphic Mappings Schwarz and Jack Lemma, ResearchGate, (in preparation)

[16] Osserman R., “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl

[17] Örnek B. N., “Sharpened forms of the Schwarz lemma on the boundary”, Bull. Korean Math. Soc., 50 (2013), 2053–2059 | DOI | MR | Zbl

[18] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR | Zbl

[19] Shoikhet D., Elin M., Jacobzon F., Levenshtein M., “The Schwarz lemma: Rigidity and Dynamics”, Harmonic and Complex Analysis and its Applications, Springer International Publishing, 2014, 135–230 | MR | Zbl

[20] Unkelbach H., “Uber die Randverzerrung bei konformer Abbildung”, Math. Z., 43:1 (1938), 739–742 | DOI | MR | Zbl