Post-quantum no-key protocol
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is proposed three-pass no-key protocol that is secure to hypothetic attacks based on computations with using quantum computers. The main operations are multiplication and exponentiation in finite ground field GF(p). Sender and receiver of secret message also use representation of some value cGF(p) as product of two other values R1GF(p) and R2GF(p) one of which is selected at random. Then the values R1 and R2 are encrypted using different local keys.
@article{BASM_2017_3_a8,
     author = {N. A. Moldovyan and A. A. Moldovyan and V. A. Shcherbacov},
     title = {Post-quantum no-key protocol},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {115--119},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a8/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
AU  - V. A. Shcherbacov
TI  - Post-quantum no-key protocol
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 115
EP  - 119
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a8/
LA  - en
ID  - BASM_2017_3_a8
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%A V. A. Shcherbacov
%T Post-quantum no-key protocol
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 115-119
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a8/
%G en
%F BASM_2017_3_a8
N. A. Moldovyan; A. A. Moldovyan; V. A. Shcherbacov. Post-quantum no-key protocol. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119. https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a8/

[1] Proceedings of the 7th International Workshop on Post-Quantum Cryptography, PQCrypto 2016 (Fukuoka, Japan, February 24–26, 2016), Lecture Notes in Computer Science (LNCS) series, 9606, Springer, 2016, 270 pp.

[2] “Federal Register: Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms”, Federal Register. The Daily journal of the United States Goverment, 81:244 (2016), 92787–92788 URL: https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf

[3] Menezes A. J., Oorschot P. C., Vanstone S. A., Handbook of applied cryptography, CRC Press, New York–London, 1996, 780 pp. | MR

[4] International Standard ISO/IEC 14888-3:2006(E). Information technology – Security techniques – Digital Signatures with appendix – Part 3: Discrete logarithm based mechanisms

[5] Produce and check procedures of Electronic Digital Signature, GOST R 34.10-2012. Russian Federation Standard. Information Technology. Cryptographic data Security, Government Committee of the Russia for Standards, 2012 (in Russian)

[6] Lenstra A. K., “Integer factoring”, Designs, codes and cryptography, 19:2 (2000), 101–128 | DOI | MR | Zbl

[7] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Generating Cubic Equations as a Method for Public Encryption”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2015, no. 3(79), 60–71 | MR | Zbl

[8] Moldovyan N. A., Moldovyan A. A., Shcherbacov A. V., “Deniable-encryption protocol using commutative transformation.”, Workshop on Foundations of Informatics, Proceedings (July 25–29, 2016, Chisinau), 2016, 285–298 | MR

[9] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl

[10] Moldovyan D. N., Moldovyan N. A., “Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms”, Quasigroups and Related Systems, 18 (2010), 177–186 | MR | Zbl

[11] Moldovyan D. N., Moldovyan N. A., “A New Hard Problem over Non-Commutative Finite Groups for Cryptographic Protocols”, 5th Int. Conference MMM-ANCS 2010, Proceedings, LNCS, 6258, Springer Verlag, 2010, 183–194

[12] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public-Key Cryptoschemes”, Quasigroups and Related Systems, 18 (2010), 165–176 | MR | Zbl

[13] Hellman M. E., Pohlig S. C., Exponentiation Cryptographic Apparatus and Method., U. S. Patent # 4,424,414, 3 Jan. 1984