Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_3_a3, author = {A. P. Pobegailo}, title = {Interpolating {B\'ezier} spline surfaces with local control}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {51--62}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a3/} }
TY - JOUR AU - A. P. Pobegailo TI - Interpolating B\'ezier spline surfaces with local control JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 51 EP - 62 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a3/ LA - en ID - BASM_2017_3_a3 ER -
A. P. Pobegailo. Interpolating B\'ezier spline surfaces with local control. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 51-62. https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a3/
[1] Barnhill R. E., Brown J. H., Klucewicz I. M., “A new twist in computer aided geometric design”, Computer Graphics and Image Processing, 8:1 (1978), 78–91 | DOI
[2] Barnhill R. E., Farin G., Fayard L., Hagen H., “Twists, curvatures and surface interrogation”, Computer-Aided Design, 20:6 (1988), 341–346 | DOI | Zbl
[3] Chiyokura H., Kimura F., “Design of solids with free-form surfaces”, Computer Graphics, 17:3 (1983), 289–298 | DOI
[4] Comninos P., “An interpolating piecewise bicubic surface with shape parameters”, Computers Graphics, 25:3 (2001), 463–481 | DOI
[5] Coons S. A., Surfaces for computer-aided design of space forms, Report MAC-TR-41, Project MAC, Massachusetts Institute of Technology, 1967
[6] Farin G., Hansford D., “Agnostic $G^1$ Gregory Surfaces”, Graphical Models, 76:4 (2012), 346–350 | DOI
[7] Faux I. D., Pratt M. J., Computational Geometry for Design and Manufacturing, Ellis Horwood Ltd., New York, 1979 | MR
[8] Forrest A. R., “On Coons and other methods for the representation of curved surfaces”, Computer Graphics and Image Processing, 4:1 (1972), 341–359 | DOI | MR
[9] Goldman R., “On the Algebraic and Geometric Foundations of Computer Graphics”, ACM Transactions on Graphics, 21:1 (2002), 52–86 | DOI
[10] Gordon W. J., “Spline-blended surface interpolation through curve networks”, J. Math. and Mech., 18:10 (1969), 931–957 | MR
[11] Gregory J., “Smooth interpolation without twist constraints”, Computer Aided Geometric Design, eds. R. E. Barnhill, R. F. Riesenfeld, Academic Press, 1974, 71–88 | DOI | MR
[12] Juhásza I., Hoffmann M., “Surface interpolation with local control by linear blending”, Annales Mathematicae et Informaticae, 36 (2009), 77–84 | MR
[13] Kallay M., Ravani B., “Optimal twist vectors as a tool for interpolating a network of curves with a minimum energy surface”, Computer Aided Geometric Design, 7:6 (1990), 465–473 | DOI | MR | Zbl
[14] Peters J., “Local smooth surface interpolation: a classification”, Computer Aided Geometric Design, 7:1–4 (1990), 191–195 | DOI | MR | Zbl
[15] Pobegailo A. P., “Local interpolation with weight functions for variable-smoothness curve design”, Computer-Aided Design, 23:8 (1991), 579–582 | DOI | Zbl
[16] Pobegailo A. P., “Interpolating rational Bézier spline curves with local shape control”, International Journal of Computer Graphics and Animation, 3:4 (2013), 1–14 | DOI | MR
[17] Pobegailo A. P., “Interpolating Bézier spline curves with local control”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, no. 2(75), 18–28 | MR | Zbl
[18] Shirman L. A., Sequin C. H., “Local surface interpolation with Bézier patches”, Computer Aided Geometric Design, 4:4 (1987), 279–295 | DOI | MR | Zbl
[19] Shirman L. A., Sequin C. H., “Local surface interpolation with shape parameters between adjoining Gregory patches”, Computer Aided Geometric Design, 7:5 (1990), 375–388 | DOI | MR | Zbl
[20] Vida J., Martin R. R., Várady T., “A survey of blending methods that use parametric surfaces”, Computer Aided Design, 26:5 (1994), 341–365 | DOI | Zbl