Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_3_a2, author = {H. M. Srivastava and F. Ghanim and R. M. El-Ashwah}, title = {Inclusion properties of certain subclass of univalent meromorphic functions defined by a~linear operator associated with the $\lambda$-generalized {Hurwitz--Lerch} zeta function}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {34--50}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a2/} }
TY - JOUR AU - H. M. Srivastava AU - F. Ghanim AU - R. M. El-Ashwah TI - Inclusion properties of certain subclass of univalent meromorphic functions defined by a~linear operator associated with the $\lambda$-generalized Hurwitz--Lerch zeta function JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 34 EP - 50 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a2/ LA - en ID - BASM_2017_3_a2 ER -
%0 Journal Article %A H. M. Srivastava %A F. Ghanim %A R. M. El-Ashwah %T Inclusion properties of certain subclass of univalent meromorphic functions defined by a~linear operator associated with the $\lambda$-generalized Hurwitz--Lerch zeta function %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 34-50 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a2/ %G en %F BASM_2017_3_a2
H. M. Srivastava; F. Ghanim; R. M. El-Ashwah. Inclusion properties of certain subclass of univalent meromorphic functions defined by a~linear operator associated with the $\lambda$-generalized Hurwitz--Lerch zeta function. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 34-50. https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a2/
[1] Srivastava H. M., Lashin A. Y., Frasin B. A., “Starlikeness and convexity of certain classes of meromorphically multivalent functions”, Theory Appl. Math. Comput. Sci., 3 (2013), 93–102 | Zbl
[2] Wang Z.-G., Srivastava H. M., Yuan S.-M., “Some basic properties of certain subclasses of meromorphically starlike functions”, J. Inequal. Appl., 2014 (2014), Article ID 2014:29, 12 pp. | MR
[3] Srivastava H. M., Manocha H. L., A Treatise on Generating Functions, Halsted Press (Ellis Horwoord Limited), Chichester; John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1984 | MR | Zbl
[4] Rainville E. D., Special Functions, Macmillan Company, New York, 1960, Reprinted by Chelsea Publishing Company, Bronx, New York, 1971 | MR | Zbl
[5] Ghanim F., “A study of a certain subclass of Hurwitz-Lerch zeta function related to a linear operator”, Abstr. Appl. Anal., 2013 (2013), Article ID 763756, 7 pp. | DOI | MR
[6] Ghanim F., Darus M., “New result of analytic functions related to Hurwitz-Zeta function”, The Sci. World J., 2013 (2013), Article ID 475643, 5 pp. | DOI
[7] Ghanim F., “Certain Properties of Classes of Meromorphic Functions Defined by A Linear Operator and Associated with Hurwitz-Lerch Zeta Function”, Advanced Studies in Contemporary Mathematics, 27:2 (2017), 175–180 | Zbl
[8] Srivastava H. M., Choi J., Series Associated with Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht–Boston–London, 2001 | MR | Zbl
[9] Srivastava H. M., “Some formulas for the Bernoulli and Euler polynomials at rational arguments”, Math. Proc. Cambridge Philos. Soc., 129 (2000), 77–84 | DOI | MR | Zbl
[10] Srivastava H. M., Choi J., Zeta and $q$-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam–London–New York, 2012 | MR | Zbl
[11] Srivastava H. M., “A new family of the $\lambda$-generalized Hurwitz-Lerch zeta functions with applications”, Appl. Math. Inform. Sci., 8 (2014), 1485–1500 | DOI | MR
[12] Srivastava H. M., “Generating relations and other results associated with some families of the extended Hurwitz–Lerch Zeta functions”, SpringerPlus, 2 (2013), Article ID 2:67, 14 pp. | Zbl
[13] Srivastava H. M., Gaboury S., New expansion formulas for a family of the $\lambda$-generalized Hurwitz–Lerch zeta functions, Internat. J. Math. Math. Sci., 2014, 2014, 13 pp. | DOI | MR
[14] Srivastava H. M., Gaboury S., Ghanim F., “Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the $\lambda$-generalized Hurwitz-Lerch zeta function”, Integral Transforms Spec. Funct., 26 (2015), 258–272 | DOI | MR | Zbl
[15] Srivastava H. M., Gaboury S., Ghanim F., “Some further properties of a linear operator associated with the $\lambda$-generalized Hurwitz–Lerch zeta function related to the class of meromorphically univalent functions”, Appl. Math. Comput., 259 (2015), 1019–1029 | MR
[16] Srivastava H. M., Saxena R. K., Pogány T. K., Saxena R., “Integral and computational representations of the extended Hurwitz–Lerch zeta function”, Integral Transforms Spec. Funct., 22 (2011), 487–506 | DOI | MR | Zbl
[17] Mathai A. M., Saxena R. K., Haubold H. J., The H-Function: Theory and Applications, Springer, New York–Dordrecht–Heidelberg–London, 2010 | MR | Zbl
[18] Srivastava H. M., Gupta K. C., Goyal S. P., The $H$-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi–Madras, 1982 | MR | Zbl
[19] Srivastava H. M., Gaboury S., “A new class of analytic functions defined by means of a generalization of the Srivastava–Attiya operator”, J. Inequal. Appl., 2015 (2015), Article ID 39, 15 pp. | DOI | MR
[20] Srivastava H. M., Attiya A. A., “An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination”, Integral Transforms Spec. Funct., 18 (2007), 207–216 | DOI | MR | Zbl
[21] Cho N. E., Kim I. H., Srivastava H. M., “Sandwich-type theorems for multivalent functions associated with the Srivastava–Attiya operator”, Appl. Math. Comput., 217 (2010), 918–928 | MR | Zbl
[22] Rǎducanu D., Srivastava H. M., “A new class of analytic functions defined by means of a convolution operator involving the Hurwitz–Lerch zeta function”, Integral Transforms Spec. Funct., 18 (2007), 933–943 | DOI | MR
[23] Srivastava H. M., Răducanu D., Sălăgean G. S., “A new class of generalized close-to-starlike functions defined by the Srivastava–Attiya operator”, Acta Math. Sinica (English Ser.), 29 (2013), 833–840 | DOI | MR | Zbl
[24] Prajapat J. K., Bulboacǎ T., “Double subordination preserving properties for a new generalized Srivastava–Attiya operator”, Chinese Ann. Math., 33 (2012), 569–582 | DOI | MR | Zbl
[25] Noor K. I., Bukhari S. Z. H., “Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava–Attiya integral operator”, Integral Transforms Spec. Funct., 21 (2010), 907–916 | DOI | MR | Zbl
[26] Choi J. H., Saigo M., Srivastava H. M., “Some inclusion properties of a certain family of integral operators”, J. Math. Anal. Appl., 276 (2002), 432–445 | DOI | MR | Zbl
[27] Cho N. E., Srivastava H. M., “Argument estimation of certain analytic functions defined by a class of multiplier transformation”, Math. Comput. Modelling, 37 (2003), 39–49 | DOI | MR | Zbl
[28] Jung I. B., Kim Y. C., Srivastava H. M., “The Hardy space of analytic functions associated with certain one-parameter families of integral operators”, J. Math. Anal. Appl., 176 (1993), 138–147 | DOI | MR | Zbl
[29] Carlson B. C., Shaffer D. B., “Starlike and prestarlike hypergeometric functions”, SIAM J. Math. Anal., 15 (1984), 737–745 | DOI | MR | Zbl
[30] Owa S., Srivastava H. M., “Univalent and starlike generalized hypergeometric functions”, Canad. J. Math., 39 (1987), 1057–1077 | DOI | MR | Zbl
[31] Dziok J., Srivastava H. M., “Classes of analytic functions associated with the generalized hypergeometric function”, Appl. Math. Comput., 103 (1999), 1–13 | DOI | MR | Zbl
[32] Dziok J., Srivastava H. M., “Certain subclasses of analytic functions associated with the generalized hypergeometric function”, Integral Transforms Spec. Funct., 14 (2003), 7–18 | DOI | MR | Zbl
[33] Hohlov Yu. E., “Operators and operations in the class of univalent functions”, Izv. Vyss. Ucebn. Zaved., Mat., 1978, no. 10, 83–89 | MR | Zbl
[34] Ruscheweyh S., “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49 (1975), 109–115 | DOI | MR | Zbl
[35] Kiryakova V., “Criteria for univalence of the Dziok-Srivastava and the Srivastava–Owa operators in the class $A$”, Appl. Math. Comput., 218 (2011), 883–892 | MR | Zbl
[36] Srivastava H. M., “Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators”, Appl. Anal. Discrete Math., 1 (2007), 56–71 | DOI | MR | Zbl
[37] Miller S. S., Mocanu P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, 25, Marcel Dekker Incorporated, New York–Basel, 2000 | MR
[38] Whittaker E. T., Watson G. N., A Course of Modern Analysis, An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge–London–New York, 1927 | MR | Zbl
[39] Wilken D. R., Feng J., “A remark on convex and starlike functions”, J. London Math. Soc. (Ser. 2), 21 (1980), 287–290 | DOI | MR | Zbl
[40] El-Ashwah R. M., “Inclusion Properties Regarding the meromorphic structure of Srivastava–Attiya operator”, Southeast Asian Bull. Math., 38 (2014), 501–512 | MR | Zbl
[41] El-Ashwah R. M., “Inclusion relationships properties for certain subclasses of meromorphic functions associated with Hurwitz–Lerch zeta function”, Acta Univ. Apulensis Math. Inform., 34 (2013), 191–205 | MR | Zbl
[42] El-Ashwah R. M., Aouf M. K., “Inclusion relationships of certain classes of meromorphic $p$-valent functions”, Southeast Asian Bull. Math., 36 (2012), 801–810 | MR | Zbl
[43] El-Ashwah R. M., Hassan A. H., “Properties of certain subclass of $p$-valent meromorphic functions associated with certain linear operator”, J. Egyptian Math. Soc., 24 (2015), 226–232 | DOI | MR
[44] Yuan S.-M., Liu Z.-M., Srivastava H. M., “Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators”, J. Math. Anal. Appl., 337 (2008), 505–515 | DOI | MR | Zbl