Semi-symmetric isotopic closure of some group varieties and the corresponding identities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Four families of pairwise equivalent identities are given and analyzed. Every identity from each of these families defines one of the following varieties: 1) the semi-symmetric isotopic closure of the variety of all Boolean groups; 2) the semi-symmetric isotopic closure of the variety of all Abelian groups; 3) the semi-symmetric isotopic closure of the variety of all groups; 4) the variety of all semi-symmetric quasigroups. It is proved that these varieties are different and form a chain. Quasigroups belonging to these varieties are described. In particular, quasigroups from 1) and 2) varieties are medial and in addition, they are either groups or non-commutative semi-symmetric quasigroups.
@article{BASM_2017_3_a0,
     author = {Halyna Krainichuk and Olena Tarkovska},
     title = {Semi-symmetric isotopic closure of some group varieties and the corresponding identities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--22},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a0/}
}
TY  - JOUR
AU  - Halyna Krainichuk
AU  - Olena Tarkovska
TI  - Semi-symmetric isotopic closure of some group varieties and the corresponding identities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 3
EP  - 22
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a0/
LA  - en
ID  - BASM_2017_3_a0
ER  - 
%0 Journal Article
%A Halyna Krainichuk
%A Olena Tarkovska
%T Semi-symmetric isotopic closure of some group varieties and the corresponding identities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 3-22
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a0/
%G en
%F BASM_2017_3_a0
Halyna Krainichuk; Olena Tarkovska. Semi-symmetric isotopic closure of some group varieties and the corresponding identities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 3-22. https://geodesic-test.mathdoc.fr/item/BASM_2017_3_a0/

[1] Aczél J., Belousov V. D., Hosszú M., “Generalized associativity and bisymmetry on quasigroups”, Acta. Math. Acad. Sci. Hung., 11:1–2 (1960), 127–136 | MR | Zbl

[2] Albert A. A., Studies in Modern Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1963 | MR | Zbl

[3] Birkhoff G., Lattice Theory, Nauka, Moscow, 1984 (in Russian) | MR

[4] Belousov V. D., “Associative system of quasigroups”, Uspekhi Mat. nauk, 13:3(81) (1958), 243 (in Russian)

[5] Belousov V. D., “Balanced identities in quasigroups”, Mat. sbornik, 70(112):1 (1966), 55–97 (in Russian) | MR | Zbl

[6] Belousov V. D., Foundations of quasigroups and loops theory, Nauka, Moscow, 1967 (in Russian) | MR

[7] Belyavskaya G. B., Quasigroups: identities with permutations, linearity and nuclei, LAP Lambert Academic Publishing, 2013 (in Russian)

[8] Belyavskaya G. B., Popovich T. V., “Conjugate sets of loops and quasigroups. DC-quasigroups”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2012, no. 1(68), 21–31 | MR | Zbl

[9] DiPaola J. W., Nemeth E., “Generalized triple systems and medial quasigroups”, Proc. of the Seventh Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, No. XVII, Utilitas Math., Winnipeg, Manitoba, 1976, 289–306 | MR

[10] Drapal A., “On multiplication groups of relatively free quasigroups isotopic to abelian groups”, Czechoslovak Mathematical Journal, 55(130) (2005), 61–87 | DOI | MR

[11] Etherington I. M. H., “Note on quasigroups and trees”, Proc. Edinburgh Math. Soc. (2), 13 (1964), 219–222 | DOI | MR

[12] Evans T., “Abstract mean values”, Duke Math. J., 30 (1963), 331–347 | DOI | MR | Zbl

[13] Evans T., “Homomorphisms of non-associative systems”, J. London Math. Soc., 24 (1949), 254–260 | DOI | MR

[14] Iliev V. V., “Semi-symmetric Algebras: General Constructions”, J. of Algebra, 148 (1992), 479–496 | DOI | MR | Zbl

[15] Grätzer G., Padmanabhan R., “On idempotent commutative and nonassociative groupoids”, Proc. Amer. Math. Soc., 29 (1973), 249–264 | MR

[16] Krainichuk Halyna, “Classification of group isotopes according to their symmetry groups”, Folia Mathematica, 19:1 (2017), 84–98 | MR

[17] Krapež A., “Generalized quadratic quasigroup equations with three variables”, Quasigroups and related systems, 17 (2009), 253–270 | MR | Zbl

[18] Krapež Aleksandar, Petrić Zoran, A note on semi-symmetry, 12 Jan. 2016, arXiv: 1507.02149v4[math.CT] | MR

[19] Mendelsohn N. S., “A natural generalization of Steiner triple systems”, Computers in number theory, Proc. Sci. Res. Council Atlas Sympos. No. 2 (Oxford, 18–23 August 1969), Academic Press, London, 1971, 323–338 | MR

[20] Mitschke A., Werner H., “On groupoids representable by vector spaces over finite fields”, Arch. Math., 24 (1973), 14–20 | DOI | MR | Zbl

[21] Osborn J. M., “New loops from old geometries”, Amer. Math. Monthly, 68 (1961), 103–107 | DOI | MR | Zbl

[22] Phillips J. D., Pushkashu D. I., Shcherbacov A. V., Shcherbacov V. A., “On Birkhoff's quasigroup axioms”, J. Algebra, 457 (2016), 7–17 | DOI | MR | Zbl

[23] Plugfelder H. O., Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990 | MR

[24] Popovych T., “On conjugate sets of quasigroup”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2011, no. 3(67), 69–76 | MR | Zbl

[25] Radó F., “On semi-symmetric quasigroups”, Aequationes mathematicae (Cluj, Romania), 11:2 (1974), 250–255 | DOI | MR | Zbl

[26] Sade A., “Quasigroupes demi-symétriques”, Ann. Soc. Sci. Bruxelles Sér. I, 79 (1965), 133–143 | MR | Zbl

[27] Sade A., “Quasigroupes demi-symétriques. II. Autotopies gauches”, Ann. Soc. Sci. Bruxelles Sér. I, 79 (1965), 223–232 | MR

[28] Sade A., “Quasigroupes demi-symétriques. III. Constructions linéaires, A-maps”, Ann. Soc. Sci. Bruxelles Sér. I, 81 (1967), 5–17 | MR | Zbl

[29] Sade A., “Quasigroupes demi-symétriques. Isotopies préservant la demisymétrie”, Math. Nach., 33 (1967), 177–188 | DOI | MR | Zbl

[30] Shcherbacov V. A., Elements of Quasigroup Theory and Applications, Chapman and Hall/CRC, 2017 | MR

[31] Smith J. D. H., An introduction to quasigroups and their representation, Chapman and Hall/CRC, London, 2007, 330 pp. | MR

[32] Smith J. D. H., “Homotopy and semi-symmetry of quasigroups”, Alg. Univ., 38 (1997), 175–184 | DOI | MR | Zbl

[33] Smith J. D. H., “Symmetry and entropy: a hierarchical perspective”, Symmetry, 16 (2005), 37–45

[34] Smith J. D. H., Romanowska A. B., Post-Modern Algebra, Wiley, New York, NY, 1999, 37–45 | MR

[35] Sokhatsky F. M., “About group isotopes I.”, Ukrainian Math. J., 47:10 (1995), 1585–1598 | DOI | MR

[36] Sokhatsky F. M., “About group isotopes. II”, Ukrainian Math. J., 47:12 (1995), 1935–1948 | DOI | MR

[37] Sokhatsky F. M., “On classification of functional equations on quasigroups”, Ukrainian Math. J., 56:4 (2004), 1259–1266 | MR | Zbl

[38] Sokhatsky F. M., “Symmetry in quasigroup and loop theory”, 3rd Mile High Conference on Nonassociative Mathematics (Denver, Colorado, USA, August 11–17, 2013), 2013 http://web.cs.du.edu/~petr/milehigh/2013/Sokhatsky.pdf

[39] Sokhatsky F.Ṁ., “Symmetry in quasigroup theory”, Bull. of DonNU. Ser. A: Nat. Sciences, 2016, no. 1–2

[40] Sokhatsky F. M., Krainichuk H. V., “Solution of distributive-like quasigroup functional equations”, Comment. Math. Univer. Carol. (Praga), 53:3 (2012), 447–459 | MR | Zbl

[41] Tabarov A. Kh., Identities and linearity of quasigroups, Disser. of Doc. Science of Phys. and Math., Lomonosov MGU, Moscow, 2009 (in Russian)

[42] Tarkovska O. O., “Variety of semisymmetry-like medial quasigroups and its subvarieties”, Bull. of DonNU. Ser. A: Nat. Sciences, 2015, no. 1–2, 78–88