Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_2_a8, author = {Iurie Calin and Stanislav Ciubotaru}, title = {The {Lyapunov} quantities and the center conditions for a~class of bidimensional polynomial systems of differential equations with nonlinearities of the fourth degree}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {112--130}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_2_a8/} }
TY - JOUR AU - Iurie Calin AU - Stanislav Ciubotaru TI - The Lyapunov quantities and the center conditions for a~class of bidimensional polynomial systems of differential equations with nonlinearities of the fourth degree JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 112 EP - 130 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2017_2_a8/ LA - en ID - BASM_2017_2_a8 ER -
%0 Journal Article %A Iurie Calin %A Stanislav Ciubotaru %T The Lyapunov quantities and the center conditions for a~class of bidimensional polynomial systems of differential equations with nonlinearities of the fourth degree %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 112-130 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2017_2_a8/ %G en %F BASM_2017_2_a8
Iurie Calin; Stanislav Ciubotaru. The Lyapunov quantities and the center conditions for a~class of bidimensional polynomial systems of differential equations with nonlinearities of the fourth degree. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 112-130. https://geodesic-test.mathdoc.fr/item/BASM_2017_2_a8/
[1] Sibirsky K. S., Algebraical invariants of differential equations and matrices, Shtiintsa, Kishinev, 1976, 267 pp. (in Russian)
[2] Sibirsky K. S., “Centeraffine invariant center and simple saddle-center conditions for a quadratic differential systems”, Dokl. Akad. Nauk SSSR, 285:4 (1985), 819–823 (in Russian) | MR
[3] Vulpe N. I., Sibirsky K. S., “Center-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities”, Dokl. Akad. Nauk SSSR, 301:6 (1988), 1297–1301 (in Russian) | MR
[4] Lloyd N. G., Christopher C. J., Devlin J., Pearson J. M., “Quadratic-like Cubic Systems”, Differential Equations and Dynamic Systems, 5:3/4 (1997), 329–345 | MR | Zbl
[5] Cozma D., Integrability of Cubic Systems with Invariant Straight Lines and Invariant Conics, Ştiinţa, 2013, 240 pp. | MR
[6] Cozma D., “The problem of the center for cubic systems with two homogeneous invariant straight lines and one invariant conic”, Annals of Differential Equations, 26:4 (2010), 385–399 | MR | Zbl
[7] Şubă A., Cozma D., “Solution of the problem of center for cubic differential systems with three invariant staright lines in generic position”, Qualitative Theory of Dynamical Systems, 6 (2005), 45–58 | DOI | MR | Zbl
[8] Gine J., “Conditions for the existence of a center for the Kukles Homogenous Systems”, An International Journal Computer and Mathematics with Applications, 43 (2002), 1261–1269 | DOI | MR | Zbl
[9] Chavarriga J., Gine J., “Integrability of a linear center perturbed by a fourth degree homogeneous polynomial”, Publicacions Matematique, 40 (1996), 21–39 | DOI | MR | Zbl
[10] Rudenok A., “New center for systems with nonlinearities of the fourth degree”, International Mathematical Conferencee: “The Fifth Bogdanov Readings on Ordinary Differential Equations”, Minsk, 2010, 69–70 (in Russian)
[11] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl
[12] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl
[13] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl
[14] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996, 36 pp.
[15] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of differential equations”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2003, no. 2(42), 69–86 | MR | Zbl
[16] Baltag V., Calin Iu., “The transvectants and the integrals for Darboux systems of differential equations”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2008, no. 1(56), 4–18 | MR | Zbl
[17] Amelkin V. V., Lucashevich N. A., Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian) | MR