Some homomorphic properties of multigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multigroup is an algebraic structure of multiset that generalized crisp group theory. In this paper, we study the concept of homomorphism and its properties in multigroups context. Some related results are established.
@article{BASM_2017_1_a6,
     author = {P. A. Ejegwa and A. M. Ibrahim},
     title = {Some homomorphic properties of multigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--76},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a6/}
}
TY  - JOUR
AU  - P. A. Ejegwa
AU  - A. M. Ibrahim
TI  - Some homomorphic properties of multigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 67
EP  - 76
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a6/
LA  - en
ID  - BASM_2017_1_a6
ER  - 
%0 Journal Article
%A P. A. Ejegwa
%A A. M. Ibrahim
%T Some homomorphic properties of multigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 67-76
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a6/
%G en
%F BASM_2017_1_a6
P. A. Ejegwa; A. M. Ibrahim. Some homomorphic properties of multigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 67-76. https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a6/

[1] Awolola J. A., Ibrahim A. M., “Some results on multigroups”, Quasi. Related Systems, 24:2 (2016), 169–177 | MR | Zbl

[2] Barlotti A., Strambach K., “Multigroups and the foundations of geometry”, Rendi. Del Cir. Matematico Di Palermo, 40:1 (1991), 5–68 | DOI | MR | Zbl

[3] Dresher M., Ore O., “Theory of multigroups”, American J. Math., 60 (1938), 705–733 | DOI | MR | Zbl

[4] Nazmul Sk., Samanta S. K., “Fuzzy soft group”, J. Fuzzy Math., 19:1 (2011), 101–114 | MR | Zbl

[5] Nazmul Sk., Majumdar P., Samanta S. K., “On multisets and multigroups”, Annals Fuzzy Math. Inform., 6:3 (2013), 643–656 | MR | Zbl

[6] Prenowitz W., “Projective geometries as multigroups”, American J. Math., 65 (1943), 235–256 | DOI | MR | Zbl

[7] Schein B. M., “Multigroups”, J. Algebra, 111 (1987), 114–132 | DOI | MR | Zbl

[8] Singh D., Ibrahim A. M., Yohanna T., Singh J. N., “An overview of the applications of multisets”, Novi Sad J. Math., 37:2 (2007), 73–92 | MR | Zbl

[9] Syropoulos A., “Mathematics of multisets”, Multiset processing, Springer-Verlag, Berlin–Heidelberg, 2001, 347–358 | DOI | MR | Zbl

[10] Tella Y., Daniel S., “A study of group theory in the context of multiset theory”, Int. J. Sci. Tech., 2:8 (2013), 609–615

[11] Tella Y., Daniel S., “Symmetric groups under multiset perspective”, IOSR J. Math., 7:5 (2013), 47–52 | DOI

[12] Wildberger N. J., “A new look at multisets”, UNSW Sydney 2052, School of Math., Australia, 2003