Forbidden set of the rational difference equation xn+1=xnxnk/(axnk+1+xnxnk+1xnk)
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

This short note aims to answer one of the open problems raised by F. Balibrea and A. Cascales in [2]. In particular, the forbidden set of the nonlinear difference equation xn+1=xnxnk/(axnk+1+xnxnk+1xnk), where k is a positive integer and a is a positive constant, is found by first computing the closed form solution of the given equation. Additional results regarding the limiting properties and periodicity of its solutions are also discussed. Numerical examples are also provided to illustrate the exhibited results. Lastly, a possible generalization of the present work is offered as an open problem.
@article{BASM_2017_1_a2,
     author = {Julius Fergy T. Rabago},
     title = {Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--38},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/}
}
TY  - JOUR
AU  - Julius Fergy T. Rabago
TI  - Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 29
EP  - 38
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/
LA  - en
ID  - BASM_2017_1_a2
ER  - 
%0 Journal Article
%A Julius Fergy T. Rabago
%T Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 29-38
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/
%G en
%F BASM_2017_1_a2
Julius Fergy T. Rabago. Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 29-38. https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/

[1] Bacani J. B., Rabago J. F. T., “On linear recursive sequences with coefficients in arithmetic-geometric progressions”, Appl. Math. Sci., 9:52 (2015), 2595–2607 (in Russian)

[2] Balibrea F., Cascales A., “On forbidden sets”, J. Diff. Equ. Appl., 21:10 (2015), 974–996 | DOI | MR | Zbl

[3] Elsayed E. M., “On a system of two nonlinear difference equations of order two”, Proc. Jangeon Math. Soc., 18:3 (2015), 353–368 | MR | Zbl

[4] Elsayed E. M., Ibrahim T. F., “Periodicity and solutions for some systems of nonlinear rational difference equations”, Hacet. J. Math. Stat., 44:6 (2015), 1361–1390 | MR | Zbl

[5] Elsayed E. M., “Solution for systems of difference equations of rational form of order two”, Comp. Appl. Math., 33:3 (2014), 751–765 | DOI | MR | Zbl

[6] Kulenović M. R. S., Ladas G. E., Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman Hall/CRC, 2002 | MR | Zbl

[7] Kulenović M. R. S., Ladas G. E., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993 | MR

[8] Grove E. A., Ladas G., Periodicities in Nonlinear Difference Equations, Chapman Hall/CRC, Boca Raton, 2005 | MR | Zbl

[9] Larcombe P. J., Rabago J. F. T., “On the Jacobsthal, Horadam and geometric mean sequences”, Bulletin of the I.C.A., 76 (2016), 117–126 | MR | Zbl

[10] Palladino F. J., On invariants and forbidden sets, 2012, arXiv: 1203.2170v2

[11] Rabago J. F. T., Bacani J. B., “On two nonlinear difference equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24:2 (2017), 121–131. | MR | Zbl

[12] Rabago J. F. T., “Effective methods on determining the periodicity and form of solutions of some systems of nonlinear difference equations”, Int. J. Dyn. Syst. Differ. Equ. (to appear)

[13] Rabago J. F. T., “On an open question concerning product-type difference equations”, Iran. J. Sci. Technol. Trans. A Sci. (to appear)

[14] Rabago J. F. T., On the closed form solution of a nonlinear difference equation and another proof to Sroysang's conjecture, Submitted

[15] Rabago J. F. T., “An intriguing application of telescoping sums”, Proceedings of the Asian Mathematical Conference, 2016 (to appear)

[16] Sedaghat H., Nonlinear difference equations, Theory with applications to social science models, Mathematical Modelling: Theory and Applications, 15, Springer, 2003 | DOI | MR

[17] Tollu D. T., Yazlik Y., Taskara N., “On the solutions of two special types of Riccati difference equation via Fibonacci numbers”, Adv. Differ. Equ., 2013 (2013), 174, 7 pp. | DOI | MR

[18] Tollu D. T., Yazlik Y., Taskara N., “The solutions of four Riccati difference equations associated with Fibonacci numbers”, Balkan J. Math., 2 (2014), 163–172

[19] Tollu D. T., Yazlik Y., Taskara N., “On fourteen solvable systems of difference equations”, Appl. Math. Comp., 233 (2014), 310–319 | DOI | MR | Zbl

[20] Touafek N., “On some fractional systems of difference equations”, Iranian J. Math. Sci. Info., 9:2 (2014), 303–305 | MR

[21] Yazlik Y., Tollu D. T., Taskara N., “On the solutions of difference equation systems with Padovan numbers”, Applied Mathematics, 4:12 (2013), 15–20 | DOI