Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_1_a2, author = {Julius Fergy T. Rabago}, title = {Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--38}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/} }
TY - JOUR AU - Julius Fergy T. Rabago TI - Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 29 EP - 38 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/ LA - en ID - BASM_2017_1_a2 ER -
%0 Journal Article %A Julius Fergy T. Rabago %T Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 29-38 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/ %G en %F BASM_2017_1_a2
Julius Fergy T. Rabago. Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 29-38. https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a2/
[1] Bacani J. B., Rabago J. F. T., “On linear recursive sequences with coefficients in arithmetic-geometric progressions”, Appl. Math. Sci., 9:52 (2015), 2595–2607 (in Russian)
[2] Balibrea F., Cascales A., “On forbidden sets”, J. Diff. Equ. Appl., 21:10 (2015), 974–996 | DOI | MR | Zbl
[3] Elsayed E. M., “On a system of two nonlinear difference equations of order two”, Proc. Jangeon Math. Soc., 18:3 (2015), 353–368 | MR | Zbl
[4] Elsayed E. M., Ibrahim T. F., “Periodicity and solutions for some systems of nonlinear rational difference equations”, Hacet. J. Math. Stat., 44:6 (2015), 1361–1390 | MR | Zbl
[5] Elsayed E. M., “Solution for systems of difference equations of rational form of order two”, Comp. Appl. Math., 33:3 (2014), 751–765 | DOI | MR | Zbl
[6] Kulenović M. R. S., Ladas G. E., Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman Hall/CRC, 2002 | MR | Zbl
[7] Kulenović M. R. S., Ladas G. E., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993 | MR
[8] Grove E. A., Ladas G., Periodicities in Nonlinear Difference Equations, Chapman Hall/CRC, Boca Raton, 2005 | MR | Zbl
[9] Larcombe P. J., Rabago J. F. T., “On the Jacobsthal, Horadam and geometric mean sequences”, Bulletin of the I.C.A., 76 (2016), 117–126 | MR | Zbl
[10] Palladino F. J., On invariants and forbidden sets, 2012, arXiv: 1203.2170v2
[11] Rabago J. F. T., Bacani J. B., “On two nonlinear difference equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24:2 (2017), 121–131. | MR | Zbl
[12] Rabago J. F. T., “Effective methods on determining the periodicity and form of solutions of some systems of nonlinear difference equations”, Int. J. Dyn. Syst. Differ. Equ. (to appear)
[13] Rabago J. F. T., “On an open question concerning product-type difference equations”, Iran. J. Sci. Technol. Trans. A Sci. (to appear)
[14] Rabago J. F. T., On the closed form solution of a nonlinear difference equation and another proof to Sroysang's conjecture, Submitted
[15] Rabago J. F. T., “An intriguing application of telescoping sums”, Proceedings of the Asian Mathematical Conference, 2016 (to appear)
[16] Sedaghat H., Nonlinear difference equations, Theory with applications to social science models, Mathematical Modelling: Theory and Applications, 15, Springer, 2003 | DOI | MR
[17] Tollu D. T., Yazlik Y., Taskara N., “On the solutions of two special types of Riccati difference equation via Fibonacci numbers”, Adv. Differ. Equ., 2013 (2013), 174, 7 pp. | DOI | MR
[18] Tollu D. T., Yazlik Y., Taskara N., “The solutions of four Riccati difference equations associated with Fibonacci numbers”, Balkan J. Math., 2 (2014), 163–172
[19] Tollu D. T., Yazlik Y., Taskara N., “On fourteen solvable systems of difference equations”, Appl. Math. Comp., 233 (2014), 310–319 | DOI | MR | Zbl
[20] Touafek N., “On some fractional systems of difference equations”, Iranian J. Math. Sci. Info., 9:2 (2014), 303–305 | MR
[21] Yazlik Y., Tollu D. T., Taskara N., “On the solutions of difference equation systems with Padovan numbers”, Applied Mathematics, 4:12 (2013), 15–20 | DOI