Regular, intra-regular and duo Γ-semirings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give several characterizations of a regular Γ-semiring, intra-regular Γ-semiring and a duo Γ-semiring by using ideals, interior-ideals, quasi-ideals and bi-ideals of a Γ-semiring.
@article{BASM_2017_1_a0,
     author = {R. D. Jagatap and Y. S. Pawar},
     title = {Regular, intra-regular and duo $\Gamma$-semirings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a0/}
}
TY  - JOUR
AU  - R. D. Jagatap
AU  - Y. S. Pawar
TI  - Regular, intra-regular and duo $\Gamma$-semirings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 3
EP  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a0/
LA  - en
ID  - BASM_2017_1_a0
ER  - 
%0 Journal Article
%A R. D. Jagatap
%A Y. S. Pawar
%T Regular, intra-regular and duo $\Gamma$-semirings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 3-14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a0/
%G en
%F BASM_2017_1_a0
R. D. Jagatap; Y. S. Pawar. Regular, intra-regular and duo $\Gamma$-semirings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2017_1_a0/

[1] Chinram R., “A Note on Quasi-ideals in $\Gamma$-Semirings”, Int. Math. Forum, 26:3 (2008), 1253–1259 | MR

[2] Chinram R., “On Quasi gamma-ideals in $\Gamma$-Semigroups”, Science Asia, 32 (2006), 351–353 | DOI

[3] Dutta T. K., Sardar S. K., “Semi-prime Ideals and Irreducible Ideals of $\Gamma$-Semiring”, Novi Sad Jour. Math., 30:1 (2000), 97–108 | MR | Zbl

[4] Good R. A., Hughes D. R., “Associated Groups for a Semigroup”, Bull. Amer. Math. Soc., 58 (1952), 624–625

[5] Green J. A., “On the Structure of Semigroup”, Ann. of Math., 2:54 (1951), 163–172 | DOI | MR | Zbl

[6] Iseki K., “Quasi-ideals in Semirings without Zero”, Proc. Japan Acad., 34 (1958), 79–84 | DOI | MR

[7] Jagatap R. D., Pawar Y. S., “Quasi-ideals and Minimal Quasi-ideals in $\Gamma$-Semirings”, Novi Sad Jour. of Mathematics, 39:2 (2009), 79–87 | MR | Zbl

[8] Jagatap R. D., Pawar Y. S., “Quasi-ideals in Regular $\Gamma$-Semirings”, Bull. Kerala Math. Asso., 6:2 (2010), 51–61 | MR

[9] Lajos S., Szasz F., “On the Bi-ideals in Associative Ring”, Proc. Japan Acad., 46 (1970), 505–507 | DOI | MR | Zbl

[10] Lajos S., Szasz F., “On the Bi-ideals in Semigroups”, Proc. Japan Acad., 45 (1969), 710–712 | DOI | MR | Zbl

[11] Lajos S., Szasz F., “On the Bi-ideals in Semigroups. II”, Proc. Japan Acad., 47 (1971), 837–839 | DOI | MR | Zbl

[12] Neumann J. V., “On Regular Rings”, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707–713 | DOI | Zbl

[13] Rao M. M. K., “$\Gamma$-Semirings. I”, Southeast Asian Bull. of Math., 19 (1995), 49–54 | MR | Zbl

[14] Shabir M., Ali A., Batool S., “A Note on Quasi-ideals in Semirings”, Southeast Asian Bull. of Math., 27 (2004), 923–928 | MR | Zbl

[15] Steinfeld O., “On Ideals Quotients and Prime Ideals”, Acta.Math. Acad. Sci. Hungar., 4 (1953), 289–298 | DOI | MR | Zbl

[16] Steinfeld O., “Uher Die Quasi-ideals von Halbgruppen”, Publ. Math. Debrecen, 4 (1956), 262–275 | MR | Zbl

[17] Zelznikov J., “Regular Semirings”, Semigroup Forum, 23 (1981), 119–136 | DOI | MR