Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_3_a6, author = {Vladimir Emelichev and Sergey Bukhtoyarov and Vadzim Mychkov}, title = {An investment problem under multicriteriality, uncertainty and risk}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {82--98}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a6/} }
TY - JOUR AU - Vladimir Emelichev AU - Sergey Bukhtoyarov AU - Vadzim Mychkov TI - An investment problem under multicriteriality, uncertainty and risk JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 82 EP - 98 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a6/ LA - en ID - BASM_2016_3_a6 ER -
%0 Journal Article %A Vladimir Emelichev %A Sergey Bukhtoyarov %A Vadzim Mychkov %T An investment problem under multicriteriality, uncertainty and risk %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 82-98 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a6/ %G en %F BASM_2016_3_a6
Vladimir Emelichev; Sergey Bukhtoyarov; Vadzim Mychkov. An investment problem under multicriteriality, uncertainty and risk. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 82-98. https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a6/
[1] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, Willey, New York, 1991 | MR
[2] Hirschberger M., Steuer R. E., Utz S., Wimmer M., Qi Y., “Computing the nondominated surface in three-criterion portfolio selection”, Oper. Res., 61:1 (2013), 169–183 | DOI | MR | Zbl
[3] Crouhy M., Galai D., Mark R., The Essentials of Risk Management, McGraw-Hill, New York, 2005
[4] Chakravarti N., Wagelmans A., “Calculation of stability radii for combinatorial optimization problem”, Oper. Res. Lett., 23 (1998), 1–7 | DOI | MR | Zbl
[5] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0–1 programming”, Discret. Optim., 7:1–2 (2010), 48–63 | DOI | MR | Zbl
[6] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0–1 programs”, Discret. Appl. Math., 91 (1999), 251–263 | DOI | MR | Zbl
[7] Kozeratska L., Forbes J., Goebel R., Kresta J., “Perturbed cones for analysis of uncertain multi-criteria optimization problems”, Linear Algebra and its Appl., 378 (2004), 203–229 | DOI | MR | Zbl
[8] Emelichev V. A., Kuzmin K. G., Mychkov V. I., “Estimates of stability radius of multicriteria Boolean problem with Hölder metrics in parameter spaces”, Bull. Acad. Sciences of Moldova, Mathematics, 2015, no. 2(78), 74–81 | MR | Zbl
[9] Sotskov Yu. N., Sotskova N. Yu., Lai T. C., Werner F., Scheduling Under Uncertainty. Theory and Algorithms, Belorusskaya nauka, Minsk, 2010
[10] Sergienko I. V., Shilo V. P., Discrete Optimization Problems: Challenges, Solution Technique and Investigations, Naukova Dumka, Kiev, 2003
[11] Emelichev V. A., Kotov V. M., Kuzmin K. G., Lebedeva T. T., Semenova N. V., Sergienko T. I., “Stability and effective algorithms for solving multiobjective discrete optimization problems with incomplete information”, J. Automation and Information Sciences, 26:2 (2014), 27–41 | DOI
[12] Gordeev E. N., “Comparison of three approaches to studying stability of solutions to problems of discrete optimization and computational geometry”, J. of Applied and Industrial Mathematics, 9:3 (2015), 358–366 | DOI | Zbl
[13] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Stability in the combinatorial vector optimization problems”, Automation and Remote Control, 62:2 (2004), 227–240 | DOI | MR | Zbl
[14] Emelichev V. A., Kuzmin K. G., “Stability criteria in vector combinatorial bottleneck problems in terms of binary relations”, Cybernetics and Systems Analysis, 44:3 (2008), 397–404 | DOI | MR | Zbl
[15] Emelichev V. A., Gurevsky E. E., Kuzmin K. G., “On stability of some lexico-graphic integer optimization problem”, Control and Cybernetics, 39:3 (2010), 811–826 | MR | Zbl
[16] Emelichev V. A., Karelkina O. V., Kuzmin K. G., “Qualitative stability analysis of multicriteria combinatorial minimun problem”, Control and Cybernetics, 41:1 (2012), 57–79 | MR | Zbl
[17] Gurevsky E., Battaia O., Dolgui A., “Balancing of simple assembly lines under variations of task processing times”, Annals of Operation Research, 201 (2012), 265–286 | DOI | MR | Zbl
[18] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Stability of vector problems of integer optimization: relationship with the stability of sets of optimal and nonoptimal solutions”, Cybernetics and Systems Analysis, 41:4 (2005), 551–558 | DOI | MR | Zbl
[19] Lebedeva T. T., Sergienko T. I., “Different types of stability of vector integer optimization problems: general approach”, Cybernrtics and System Analysis, 44:3 (2008), 429–433 | DOI | MR | Zbl
[20] Libura M., van der Poort E. S., Sierksma G., van der Veen J. A. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Appl. Math., 87:1–3 (1998), 159–185 | DOI | MR | Zbl
[21] Emelichev V. A., Korotkov V. V., “On stability radius of the multicriteria variant of Markowitz's investment portfolio problem”, Bull. Acad. Sciences of Moldova, Mathematics, 2011, no. 1(65), 83–94 | MR | Zbl
[22] Emelichev V. A., Korotkov V. V., Kuzmin K. G., “Multicriterial investment problem in conditions of uncertainty and risk”, J. of Computer and System Sciences International, 50:6 (2011), 1011–1018 | DOI | MR | Zbl
[23] Emelichev V. A., Korotkov V. V., “Post-optimal analysis of investment problem with Wald's ordered maximin criteria”, Bull. Acad. Sciences of Moldova, Mathematics, 2012, no. 1(68), 59–69 | MR | Zbl
[24] Emelichev V. A., Korotkov V. V., “Stability radius of a vector investment problem with Savage's minimax risk criteria”, Cybernetics and Systems Analysis, 48:3 (2012), 378–386 | DOI | MR | Zbl
[25] Emelichev V. A., Korotkov V. V., “On stability of a vector Boolean investment problem with Wald's criteria”, Discrete Math. Appl., 22:4 (2012), 367–381 | DOI | MR | Zbl
[26] Emelichev V. A., Korotkov V. V., Nikulin Yu. V., “Post-optimal analysis for Markowitz multicriteria portfolio optimization problem”, J. Multi-Crit. Decis. Anal., 21 (2014), 95–100 | DOI
[27] Emelichev V. A., Korotkov V. V., “On stability of multicriteria investment Boolean problem with Wald's efficiency criteria”, Bull. Acad. Sciences of Moldova, Mathematics, 2014, no. 1(74), 3–13 | MR | Zbl
[28] Emelichev V. A., Ustilko E. V., “Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria”, J. Appl. Discrete Mathematics, 2014, no. 3, 117–123
[29] Bukhtoyarov S. E., Emelichev V. A., “On the stability measure of solutions to a vector version of an investment problem”, Applied and Industrial Mathematics, 9:3 (2015), 1–8 | MR
[30] Emelichev V. A., Kuzmin K. G., “On the strong stability of a vector problem of treshold Boolean functions minimization”, Informatics, 2005, no. 1, 16–27
[31] Emelichev V. A., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Discrete Analysis and Operation Research, Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[32] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[33] Emelichev V. A., Kuz'min K. G., “On a type of stability of a multicriteria integer linear programming problem in the case of a monotone norm”, Journal of Computer and Systems Sciences International, 46:5 (2007), 714–720 | DOI | MR
[34] Leontiev V. K., “Stability in linear discrete problems”, Problems of Cybernetics, 35, Science, Moscow, 1979, 169–184 | MR
[35] Emelichev V. A., Nikulin Yu. V., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR | Zbl
[36] Emelichev V. A., Nikulin Yu. V., “On the radius of strong stability for a vector trajectory problem”, Bull. of the Belarusian State University, Ser. 1, 2001, no. 1, 17–20
[37] Emelichev V. A., Korotkov V. V., “On type of stability of vector investment problem with Wald's criteria”, The Institute of Mathematics Proceedings NAC of Belarus, 20:2 (2012), 10–17 | MR
[38] Bronshtein E. M., Kachkaeva M. M., Tulupova E. V., “Control of investment portfolio based on complex quantile risk measures”, J. of Comput. and Syst. Sci. Int., 50:1 (2011), 174–180 | DOI | MR | Zbl
[39] Yu P., Multiple-criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York, 1985 | MR | Zbl
[40] Miettinen K., Nonlinear Multiobjective Optimization, Kluwer, Boston, 1999 | MR | Zbl
[41] Savage L., The Foundations of Statistics, Dover, New York, 1972 | MR | Zbl
[42] Du D., Pardalos P. (eds.), Minimax and Applications, Kluwer, Dordrecht, 1995 | MR | Zbl
[43] Dem'yanov V. F., Malozemov V. N., Introduction to Minimax, Dover Publ., New York, 1990 | MR | Zbl
[44] Emelichev V. A., Kuzmin K. G., “On a type of stability of a multicriteria integer linear programming problem in the case of a monotone norm”, J. of Computer and Systems Sciences International, 46:5 (2007), 714–720 | DOI | MR
[45] Emelichev V. A., Kuzmin K. G., “Multicriterial problem stability of the maximum graph cut”, Bull. Nation. Acad. Sciences of Azerbaijan. Ser. Phys.-Tech. and Math. Sciences, 33:6 (2013), 90–99
[46] Podinovski V. V., Nogin V. D., Pareto-optimal Solutions of Multicriteria Problems, FIZMATLIT, Moscow, 2007 | MR
[47] Emelichev V. A., Kuzmin K. G., “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | MR | Zbl
[48] Emelichev V. A., Kuzmin K. G., “Stability radius of an efficient solution of a vector problem of integer linear programming in the Hölder metric”, Cybernetics and Systems Analysis, 42:4 (2006), 609–614 | DOI | MR | Zbl
[49] Mychkov V., Emelichev V., Nikulin Yu., “Stability aspects in discrete venturesome investment models”, 28th European Conference on Operational Research, EURO-2016 (Poznan', Poland, July 3–6, 2016), Final programme, 4