Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_3_a5, author = {Radu Buzatu and Sergiu Cataranciuc}, title = {Nontrivial convex covers of trees}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {72--81}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a5/} }
Radu Buzatu; Sergiu Cataranciuc. Nontrivial convex covers of trees. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 72-81. https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a5/
[1] Boltyansky V., Soltan P., Combinatorial geometry of various classes of convex sets, Chişinǎu, 1978 (in Russian)
[2] Cataranciuc S., Sur N., D-convex simple and quasi-simple graphs, Chişinǎu, Republic of Moldova, 2009 (in Romanian) | MR
[3] Harary F., Graph Theory, Addison-Wesley, 1969 | MR | Zbl
[4] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L., “Convex covers of graphs”, Matemática Contemporânea, Sociedade Brasileira de Matemática, 39 (2010), 31–38 | MR | Zbl
[5] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L., “Partitioning a graph into convex sets”, Discrete Mathematics, 311 (2011), 1968–1977 | DOI | MR | Zbl
[6] Buzatu R., Cataranciuc S., “Convex graph covers”, Computer Science Journal of Moldova, 23:3(69) (2015), 251–269 | MR
[7] Buzatu R., “Covers of graphs by two convex sets”, Studia univ. Babeş-Bolyai, Series Informatica, 61:1 (2016), 5–22 | MR
[8] Buzatu R., Cataranciuc S., “Cover of undirected graph into nontrivial convex sets”, Proceedings of the 5th International Conference: Mathematical Modeling, Optimization and Information Technology (March 22–25, 2016, Chişinǎu, Republic of Moldova), 64–79 (in Romanian)