Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper cubic systems which have degenerate infinity and invariant straight lines of total multiplicity five are classified. It is proved that, modulo affine transformations and time rescaling, there are 24 classes of such systems. For every class the qualitative investigation was carried out in the Poincaré disc.
@article{BASM_2016_3_a3,
     author = {Alexandru \c{S}ub\u{a} and Vadim Repe\c{s}co},
     title = {Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {38--56},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a3/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Vadim Repeşco
TI  - Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 38
EP  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a3/
LA  - en
ID  - BASM_2016_3_a3
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Vadim Repeşco
%T Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 38-56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a3/
%G en
%F BASM_2016_3_a3
Alexandru Şubă; Vadim Repeşco. Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56. https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a3/

[1] Artes J., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184:2 (1998), 207–230 | DOI | MR | Zbl

[2] Christopher C., Llibre J., Pereira J. V., “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific Journal of Mathematics, 329:1 (2007), 63–117 | DOI | MR

[3] Cozma D., Şubă A., “The solution of the problem of center for cubic differential systems with four invariant straight lines”, Mathematical analysis and applications (Iaşi, 1977), An. Ştiinţ. Univ. “Al. I. Cuza”, 44, Suppl., 1998, 517–530 | MR | Zbl

[4] Suo Guangjian, Sun Jifang., “The $n$-degree differential system with $(n-1)(n+1)/2$ straight line solutions has no limit cycles”, Proc. of Ordinary Differential Equations and Control Theory (Wuhan, 1987), 216–220 (in Chinese) | MR

[5] Kooij R., “Cubic systems with four line invariants, including complex conjugated lines”, Math. Proc. Camb. Phil. Soc., 118:1 (1995), 7–19 | DOI | MR | Zbl

[6] Llibre J., Vulpe N., “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl

[7] Lyubimova R. A., “About one differential equation with invariant straight lines”, Differential and integral equations, 8, Gorky Universitet, 1984, 66–69 (in Russian)

[8] Puţuntică V., Şubă A., “The cubic differential system with six real invariant straight lines along two directions”, Studia Universitatis. Seria Ştiinţe Exacte şi Economice, 2008, no. 8(13), 5–16

[9] Puţuntică V., Şubă A., “The cubic differential system with six real invariant straight lines along three directions”, Bul. Acad. Stiinţe Repub. Moldova, Mat., 2009, no. 2(60), 111–130 | MR | Zbl

[10] Şubă A., Cozma D., “Solution of the problem of the center for cubic differential system with three invariant straight lines in generic position”, Qualitative Theory of Dynamical Systems, 6, Universitat de Lleida, Spaine, 2005, 45–58 | DOI | MR

[11] Şubă A., Repeşco V., Puţuntică V., “Cubic systems with seven invariant straight lines. I”, Bul. Acad. Stiinţe Repub. Moldova, Mat., 2012, no. 2(69), 81–98 | MR | Zbl

[12] Şubă A., Repeşco V., “Configurations of invariant straight lines of cubic differential systems with degenerate infinity”, Scientific Bulletin of Chernivtsi University, Series Mathematics, 2:2–3 (2012), 177–182 | MR | Zbl

[13] Şubă A., Repeşco V., Puţuntică V., “Cubic systems with invariant affine straight lines of total parallel multiplicity seven”, Electron. J. Diff. Equ., 2013 (2013), 274, 22 pp. http://ejde.math.txstate.edu/ | DOI | Zbl

[14] Repeşco V., “Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity six”, ROMAI Journal, 9:1 (2013), 133–146 | MR | Zbl