Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_3_a0, author = {Vijay Kumar Bhat and Meeru Abrol and Latif Hanna and Maryam Alkandari}, title = {On ($\sigma$-$\delta$)-rings over {Noetherian} rings}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--11}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/} }
TY - JOUR AU - Vijay Kumar Bhat AU - Meeru Abrol AU - Latif Hanna AU - Maryam Alkandari TI - On ($\sigma$-$\delta$)-rings over Noetherian rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 3 EP - 11 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/ LA - en ID - BASM_2016_3_a0 ER -
%0 Journal Article %A Vijay Kumar Bhat %A Meeru Abrol %A Latif Hanna %A Maryam Alkandari %T On ($\sigma$-$\delta$)-rings over Noetherian rings %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 3-11 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/ %G en %F BASM_2016_3_a0
Vijay Kumar Bhat; Meeru Abrol; Latif Hanna; Maryam Alkandari. On ($\sigma$-$\delta$)-rings over Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11. https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/
[1] Bhat V. K., “On 2-primal Ore extensions”, Ukr. Math. bull., 4:2 (2007), 173–179 | MR
[2] Bhat V. K., “Differential Operator rings over 2-primal rings”, Ukr. Math. bull., 5:2 (2008), 153–158 | MR
[3] Bhat V. K., “On 2-primal Ore extension over Noetherian $\sigma(*)$-rings”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2011, no. 1(65), 42–49 | MR | Zbl
[4] Smarty Gosani, Bhat V. K., “Ore extensions over Noetherian $\delta$-rings”, J. Math. Computt. Sci., 3:5 (2013), 1180–1186
[5] Hirano Y., “On the uniqueness of rings of coefficients in skew polynomial rings”, Publ. Math. Debrechen, 54:3–4 (1999), 489–495 | MR | Zbl
[6] Hong C. Y., Kim N. K., Kwak T. K., “Ore extensions of Baer and p.p-rings”, J. Pure and Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl
[7] Hong C. Y., Kwak T. K., “On minimal strongly prime ideals”, Comm. Algebra, 28:10 (2000), 4868–4878 | DOI | MR
[8] Hong C. Y., Kim N. K., Kwak T. K., Lee Y., “On weak regularity of rings whose prime ideals are maximal”, J. Pure and Applied Algebra, 146:1 (2000), 35–44 | DOI | MR | Zbl
[9] Kim N. K., Kwak T. K., “Minimal prime ideals in 2-primal rings”, Math. Japonica, 50:3 (1999), 415–420 | MR | Zbl
[10] Krempa J., “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl
[11] Neetu Kumari, Smarty Gosani, Bhat V. K., “Skew polynomial rings over weak $\sigma$-rigid rings and $\sigma(*)$-rings”, European J. of Pure and Applied Mathematics, 6:1 (2013), 59–65 | MR | Zbl
[12] Kwak T. K., “Prime radicals of Skew polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl
[13] Marks G., “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl
[14] McConnell J. C., Robson J. C., Noncommutative Noetherian Rings, Wiley, 1987 ; revised edition: American Math. Society, 2001 | MR | Zbl | Zbl
[15] Shin G. Y., “Prime ideals and sheaf representations of a pseudo symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR