On (σ-δ)-rings over Noetherian rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a ring R, an endomorphism σ of R and a σ-derivation δ of R, we introduce (σ-δ)-ring and (σ-δ)-rigid ring which are the generalizations of σ()-rings and δ-rings, and investigate their properties. Moreover, we prove that a (σ-δ)-ring is 2-primal and its prime radical is completely semiprime.
@article{BASM_2016_3_a0,
     author = {Vijay Kumar Bhat and Meeru Abrol and Latif Hanna and Maryam Alkandari},
     title = {On ($\sigma$-$\delta$)-rings over {Noetherian} rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--11},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
AU  - Meeru Abrol
AU  - Latif Hanna
AU  - Maryam Alkandari
TI  - On ($\sigma$-$\delta$)-rings over Noetherian rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 3
EP  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/
LA  - en
ID  - BASM_2016_3_a0
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%A Meeru Abrol
%A Latif Hanna
%A Maryam Alkandari
%T On ($\sigma$-$\delta$)-rings over Noetherian rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 3-11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/
%G en
%F BASM_2016_3_a0
Vijay Kumar Bhat; Meeru Abrol; Latif Hanna; Maryam Alkandari. On ($\sigma$-$\delta$)-rings over Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11. https://geodesic-test.mathdoc.fr/item/BASM_2016_3_a0/

[1] Bhat V. K., “On 2-primal Ore extensions”, Ukr. Math. bull., 4:2 (2007), 173–179 | MR

[2] Bhat V. K., “Differential Operator rings over 2-primal rings”, Ukr. Math. bull., 5:2 (2008), 153–158 | MR

[3] Bhat V. K., “On 2-primal Ore extension over Noetherian $\sigma(*)$-rings”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2011, no. 1(65), 42–49 | MR | Zbl

[4] Smarty Gosani, Bhat V. K., “Ore extensions over Noetherian $\delta$-rings”, J. Math. Computt. Sci., 3:5 (2013), 1180–1186

[5] Hirano Y., “On the uniqueness of rings of coefficients in skew polynomial rings”, Publ. Math. Debrechen, 54:3–4 (1999), 489–495 | MR | Zbl

[6] Hong C. Y., Kim N. K., Kwak T. K., “Ore extensions of Baer and p.p-rings”, J. Pure and Appl. Algebra, 151:3 (2000), 215–226 | DOI | MR | Zbl

[7] Hong C. Y., Kwak T. K., “On minimal strongly prime ideals”, Comm. Algebra, 28:10 (2000), 4868–4878 | DOI | MR

[8] Hong C. Y., Kim N. K., Kwak T. K., Lee Y., “On weak regularity of rings whose prime ideals are maximal”, J. Pure and Applied Algebra, 146:1 (2000), 35–44 | DOI | MR | Zbl

[9] Kim N. K., Kwak T. K., “Minimal prime ideals in 2-primal rings”, Math. Japonica, 50:3 (1999), 415–420 | MR | Zbl

[10] Krempa J., “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[11] Neetu Kumari, Smarty Gosani, Bhat V. K., “Skew polynomial rings over weak $\sigma$-rigid rings and $\sigma(*)$-rings”, European J. of Pure and Applied Mathematics, 6:1 (2013), 59–65 | MR | Zbl

[12] Kwak T. K., “Prime radicals of Skew polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl

[13] Marks G., “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl

[14] McConnell J. C., Robson J. C., Noncommutative Noetherian Rings, Wiley, 1987 ; revised edition: American Math. Society, 2001 | MR | Zbl | Zbl

[15] Shin G. Y., “Prime ideals and sheaf representations of a pseudo symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–60 | DOI | MR