On pseudoisomorphy and distributivity of quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 125-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A repeated bijection in an isotopism of quasigroups is called a companion of the third component. The last is called a pseudoisomorphism with the companion. Isotopy coincides with pseudoisomorphy in the class of inverse property loops and with isomorphy in the class of commutative inverse property loops. This result is a generalization of the corresponding theorem for commutative Moufang loops. A notion of middle distributivity is introduced: a quasigroup is middle distributive if all its middle translations are automorphisms. In every quasigroup two identities of distributivity (left, right and middle) imply the third. This fact and some others help us to find a short proof of a theorem which gives necessary and sufficient conditions for a quasigroup to be distributive. There is but a slight difference between this theorem and the well-known Belousov's theorem.
@article{BASM_2016_2_a9,
     author = {Fedir M. Sokhatsky},
     title = {On pseudoisomorphy and distributivity of quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {125--142},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a9/}
}
TY  - JOUR
AU  - Fedir M. Sokhatsky
TI  - On pseudoisomorphy and distributivity of quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 125
EP  - 142
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a9/
LA  - en
ID  - BASM_2016_2_a9
ER  - 
%0 Journal Article
%A Fedir M. Sokhatsky
%T On pseudoisomorphy and distributivity of quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 125-142
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a9/
%G en
%F BASM_2016_2_a9
Fedir M. Sokhatsky. On pseudoisomorphy and distributivity of quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 125-142. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a9/

[1] Belousov V. D., Foundation of the theory of quasigroups and loops, Nauka, M., 1967, 222 pp. (in Russian) | MR

[2] Plugfelder Hala O., Quasigroups and loops: introduction, Heldermann, Berlin, 1990, 147 pp. | MR

[3] Mullen G. L., Shcherbacov V. A., “On orthogonality of binary operations and squares”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2005, no. 2(48), 3–42 | MR | Zbl

[4] Stanovský David, A guide to self-distributive quasigroups, or latin quandles, arXiv: 1505.06609v2[math.GR] | MR

[5] Kepka T., Němec P., “Commutative Moufang loops and distributive groupoids of small orders”, Czech. Math. J., 31:106 (1981), 633–669 | MR | Zbl