General form transversals in groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical notion of transversal in group to its subgroup is generalised. It is made with the help of reducing any conditions on the choice of representatives of the left (right) cosets in group to its subgroup. Obtained general form transversals are investigated and some its properties are studied.
@article{BASM_2016_2_a7,
     author = {Eugene Kuznetsov},
     title = {General form transversals in groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {93--106},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a7/}
}
TY  - JOUR
AU  - Eugene Kuznetsov
TI  - General form transversals in groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 93
EP  - 106
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a7/
LA  - en
ID  - BASM_2016_2_a7
ER  - 
%0 Journal Article
%A Eugene Kuznetsov
%T General form transversals in groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 93-106
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a7/
%G en
%F BASM_2016_2_a7
Eugene Kuznetsov. General form transversals in groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 93-106. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a7/

[1] Baer R., “Nets and groups”, Trans. Amer. Math. Soc., 46 (1939), 110–141 | DOI | MR | Zbl

[2] Johnson K. W., Transversals, $S$-rings and Centralizer Rings of Groups, Lecture Notes in Mathematics, 848, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR

[3] Kuznetsov E. A., “Transversals in groups. 1. Elementary properties”, Quasigroups and related systems, 1 (1994), 22–42 | MR | Zbl

[4] Lal R., “Transversals in groups”, J. Algebra, 181 (1996), 70–81 | DOI | MR | Zbl

[5] Niemenmaa M., Kepka T., “On multiplication groups of loops”, J. Algebra, 135:1 (1990), 112–122 | DOI | MR | Zbl

[6] Pflugfelder H. O., Quasigroups and Loops. An Introduction, Sigma Series in Pure Mathematics, 7, Helderman-Verlag, 1991, 160 pp. | MR

[7] Smith J. D. H., “Loop transversals to linear codes”, J. Comb., Inf. and System Sciences, 17 (1992), 1–8 | MR | Zbl