Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 40-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe a new approach for building an asymmetric ID-based encryption (IBE) system and an authentication protocol without disclosure, using the idea of Explicit Hilbert Pairing.
@article{BASM_2016_2_a3,
     author = {S. V. Vostokov and R. P. Vostokova and I. A. Budanaev},
     title = {Asymmetric {ID-based} encryption system, using an explicit pairing function of the reciprocity law},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {40--44},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a3/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - R. P. Vostokova
AU  - I. A. Budanaev
TI  - Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 40
EP  - 44
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a3/
LA  - en
ID  - BASM_2016_2_a3
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A R. P. Vostokova
%A I. A. Budanaev
%T Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 40-44
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a3/
%G en
%F BASM_2016_2_a3
S. V. Vostokov; R. P. Vostokova; I. A. Budanaev. Asymmetric ID-based encryption system, using an explicit pairing function of the reciprocity law. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 40-44. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a3/

[1] Izvestiya AN SSSR, Ser. Matem., 42:6 (1978), 1288–1321 | DOI | MR | Zbl | Zbl

[2] Zap. Nauchn. Sem. LOMI, 94, 1979, 50–69 | DOI | MR | Zbl | Zbl

[3] Brueckner H., Hilbert symbole zum Exponenten $p^n$ und Pfaffische Formen, Hamburg, 1979, 788 pp.

[4] Discrete Mathematics and Applications, 20:2 (2010), 231–246 | DOI | DOI | MR | Zbl

[5] Fesenko I. B., Vostokov S. V., Local Fields and Their Extensions, Translations of Mathematical Monographs, 121, AMS, 1993 | MR | Zbl