Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_2_a2, author = {N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova and N. N. Dobrovol'skii}, title = {On {Lagrange} algorithm for reduced algebraic irrationalities}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {27--39}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/} }
TY - JOUR AU - N. M. Dobrovol'skii AU - I. N. Balaba AU - I. Yu. Rebrova AU - N. N. Dobrovol'skii TI - On Lagrange algorithm for reduced algebraic irrationalities JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 27 EP - 39 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/ LA - en ID - BASM_2016_2_a2 ER -
%0 Journal Article %A N. M. Dobrovol'skii %A I. N. Balaba %A I. Yu. Rebrova %A N. N. Dobrovol'skii %T On Lagrange algorithm for reduced algebraic irrationalities %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 27-39 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/ %G en %F BASM_2016_2_a2
N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova; N. N. Dobrovol'skii. On Lagrange algorithm for reduced algebraic irrationalities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 27-39. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/
[1] Aleksandrov A. G., “Computer investigation of continued fractions”, Algorithmic studies in combinatorics, Nauka, Moscow, 1978, 142–161 (in Russian) | MR
[2] Berestovskii V. N., Nikonorov Yu. G., “Continued fractions, the group $GL(2,Z)$, and Pisot numbers”, Siberian Adv. Math., 17:4 (2007), 268–290 | DOI | MR | MR | Zbl
[3] Bryuno A. D., “Continued fraction expansion of algebraic numbers”, USSR Computational Mathematics and Mathematical Physics, 4:2 (1964), 1–15 | DOI | MR | Zbl
[4] Bryuno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevsky sbornik, 16:2 (2015), 35–65 (in Russian)
[5] Dobrovol'skii N. M., Hyperbolic Zeta function lattices, Dep. v VINITI 24.08.84, No 6090–84, 1984 (in Russian)
[6] Dobrovol'skii N. M., Quadrature formulas for classes $E^\alpha_s(c)$ and $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 6091–84, 1984 (in Russian)
[7] Dobrovol'skii N. M., “About the modern problems of the theory of hyperbolic zeta-functions of lattices”, Chebyshevskii sbornik, 16:1(53) (2015), 176–190 (in Russian) | MR
[8] Dobrovol'skii N. M., Sobolev D. K., Soboleva V. N., “On the matrix decomposition of a reduced cubic irrational”, Chebyshevskii sbornik, 14:1(45) (2013), 34–55 (in Russian) | MR
[9] Dobrovol'skii N. M., Yushina E. I., “On the reduced algebraic irrationalities”, Algebra and Applications, Proceedings of the International Conference on Algebra, dedicated to the 100th anniversary of L. A. Kaloujnine (Nalchik, 6–11 September 2014), Publishing house KBSU, Nalchik, 2014, 44–46 (in Russian)
[10] Dobrovol'skii N. M., Dobrovol'skii N. N., Yushina E. I., “On a matrix form of a theorem of Galois on purely periodic continued fractions”, Chebyshevskii sbornik, 13:3(43) (2012), 47–52 (in Russian) | Zbl
[11] Podsypanin V. D., “On the expansion of irrationalities of the fourth degree in the continued fraction”, Chebyshevskii sbornik, 8:3(23) (2007), 43–46 (in Russian)
[12] Podsypanin E. V., “A generalization of the algorithm for continued fractions related to the algorithm of Viggo Brunn”, Journal of Soviet Mathematics, 16:1 (1981), 885–893 | DOI | MR | Zbl
[13] Podsypanin E. V., “On the expansion of irrationalities of higher degrees in the generalized continued fraction (paper of V. D. Podsypanin) the manuscript of 1970”, Chebyshevskii sbornik, 8:3(23) (2007), 47–49 (in Russian)
[14] Trikolich E. V., Yushina E. I., “Continued fractions for quadratic irrationalities from the field $\mathbb Q(\sqrt5)$”, Chebyshevskii sbornik, 10:1(29) (2009), 77–94 (in Russian) | MR
[15] Frolov K. K., “Upper bounds for the errors of quadrature formulae on classes of functions”, Dokl. Akad. Nauk SSSR, 231:4 (1976), 818–821 | MR | Zbl
[16] Frolov K. K., Quadrature formulas for classes of functions, PhD thesis, VTS AN SSSR, Moscow, 1979 (in Russian)
[17] Yushina E. I., “On some reduced algebraic irrationalities”, Modern problems of mathematics, mechanics, informatics, Proceedings of the Regional scientific student conference, TulSU, Tula, 2015, 66–72 (in Russian)