On Lagrange algorithm for reduced algebraic irrationalities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 27-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the properties of Lagrange algorithm for expansion of algebraic number are refined. It has been shown that for reduced algebraic irrationalities the quantity of elementary arithmetic operations which needed for the computation of next incomplete quotient does not depend on the value of this incomplete quotient. It is established that beginning with some index all residual fractions for an arbitrary reduced algebraic irrationality are the generalized Pisot numbers. An asymptotic formula for conjugate numbers to residual fractions is obtained. The definition of generalized Pisot numbers differs from the definition of Pisot numbers by absence of the requirement to be integer.
@article{BASM_2016_2_a2,
     author = {N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova and N. N. Dobrovol'skii},
     title = {On {Lagrange} algorithm for reduced algebraic irrationalities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {27--39},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - I. N. Balaba
AU  - I. Yu. Rebrova
AU  - N. N. Dobrovol'skii
TI  - On Lagrange algorithm for reduced algebraic irrationalities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 27
EP  - 39
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/
LA  - en
ID  - BASM_2016_2_a2
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A I. N. Balaba
%A I. Yu. Rebrova
%A N. N. Dobrovol'skii
%T On Lagrange algorithm for reduced algebraic irrationalities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 27-39
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/
%G en
%F BASM_2016_2_a2
N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova; N. N. Dobrovol'skii. On Lagrange algorithm for reduced algebraic irrationalities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 27-39. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a2/

[1] Aleksandrov A. G., “Computer investigation of continued fractions”, Algorithmic studies in combinatorics, Nauka, Moscow, 1978, 142–161 (in Russian) | MR

[2] Berestovskii V. N., Nikonorov Yu. G., “Continued fractions, the group $GL(2,Z)$, and Pisot numbers”, Siberian Adv. Math., 17:4 (2007), 268–290 | DOI | MR | MR | Zbl

[3] Bryuno A. D., “Continued fraction expansion of algebraic numbers”, USSR Computational Mathematics and Mathematical Physics, 4:2 (1964), 1–15 | DOI | MR | Zbl

[4] Bryuno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevsky sbornik, 16:2 (2015), 35–65 (in Russian)

[5] Dobrovol'skii N. M., Hyperbolic Zeta function lattices, Dep. v VINITI 24.08.84, No 6090–84, 1984 (in Russian)

[6] Dobrovol'skii N. M., Quadrature formulas for classes $E^\alpha_s(c)$ and $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 6091–84, 1984 (in Russian)

[7] Dobrovol'skii N. M., “About the modern problems of the theory of hyperbolic zeta-functions of lattices”, Chebyshevskii sbornik, 16:1(53) (2015), 176–190 (in Russian) | MR

[8] Dobrovol'skii N. M., Sobolev D. K., Soboleva V. N., “On the matrix decomposition of a reduced cubic irrational”, Chebyshevskii sbornik, 14:1(45) (2013), 34–55 (in Russian) | MR

[9] Dobrovol'skii N. M., Yushina E. I., “On the reduced algebraic irrationalities”, Algebra and Applications, Proceedings of the International Conference on Algebra, dedicated to the 100th anniversary of L. A. Kaloujnine (Nalchik, 6–11 September 2014), Publishing house KBSU, Nalchik, 2014, 44–46 (in Russian)

[10] Dobrovol'skii N. M., Dobrovol'skii N. N., Yushina E. I., “On a matrix form of a theorem of Galois on purely periodic continued fractions”, Chebyshevskii sbornik, 13:3(43) (2012), 47–52 (in Russian) | Zbl

[11] Podsypanin V. D., “On the expansion of irrationalities of the fourth degree in the continued fraction”, Chebyshevskii sbornik, 8:3(23) (2007), 43–46 (in Russian)

[12] Podsypanin E. V., “A generalization of the algorithm for continued fractions related to the algorithm of Viggo Brunn”, Journal of Soviet Mathematics, 16:1 (1981), 885–893 | DOI | MR | Zbl

[13] Podsypanin E. V., “On the expansion of irrationalities of higher degrees in the generalized continued fraction (paper of V. D. Podsypanin) the manuscript of 1970”, Chebyshevskii sbornik, 8:3(23) (2007), 47–49 (in Russian)

[14] Trikolich E. V., Yushina E. I., “Continued fractions for quadratic irrationalities from the field $\mathbb Q(\sqrt5)$”, Chebyshevskii sbornik, 10:1(29) (2009), 77–94 (in Russian) | MR

[15] Frolov K. K., “Upper bounds for the errors of quadrature formulae on classes of functions”, Dokl. Akad. Nauk SSSR, 231:4 (1976), 818–821 | MR | Zbl

[16] Frolov K. K., Quadrature formulas for classes of functions, PhD thesis, VTS AN SSSR, Moscow, 1979 (in Russian)

[17] Yushina E. I., “On some reduced algebraic irrationalities”, Modern problems of mathematics, mechanics, informatics, Proceedings of the Regional scientific student conference, TulSU, Tula, 2015, 66–72 (in Russian)