On spectrum of medial T2-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 143-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exist medial T2-quasigroups of any order of the form $$ 2^{k_1}3^{k_2}5^{k_3}11^{k_4}17^{k_5}23^{k_6}53^{k_7}59^{k_8}83^{k_9}101^{k_{10}}p_1^{\alpha_1}p_2^{\alpha_2}\dots p_m^{\alpha_m}, $$ where k12, k2,,k101, pi are prime numbers of the form 6t+1, αiN, i{1,,m}. Some other results on T2-quasigroups are given.
@article{BASM_2016_2_a10,
     author = {A. V. Scerbacova and V. A. Shcherbacov},
     title = {On spectrum of medial $T_2$-quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {143--154},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a10/}
}
TY  - JOUR
AU  - A. V. Scerbacova
AU  - V. A. Shcherbacov
TI  - On spectrum of medial $T_2$-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 143
EP  - 154
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a10/
LA  - en
ID  - BASM_2016_2_a10
ER  - 
%0 Journal Article
%A A. V. Scerbacova
%A V. A. Shcherbacov
%T On spectrum of medial $T_2$-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 143-154
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a10/
%G en
%F BASM_2016_2_a10
A. V. Scerbacova; V. A. Shcherbacov. On spectrum of medial $T_2$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 143-154. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a10/

[1] Belousov V. D., Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (in Russian) | MR

[2] Belousov V. D., Elements of Quasigroup Theory: a Special Course, Kishinev State University Printing House, Kishinev, 1981 (in Russian)

[3] Belousov V. D., Parastrophic-orthogonal quasigroups, Preprint, Shtiinta, Kishinev, 1983 (in Russian) | MR

[4] Belousov V. D., “Parastrophic-orthogonal quasigroups.”, Translated from the 1983 Russian original, Quasigroups Relat. Syst., 13:1 (2005), 25–72 | MR | Zbl

[5] Bennett F. E., “Quasigroup identities and Mendelsohn designs”, Canad. J. Math., 41:2 (1989), 341–368 | DOI | MR

[6] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl

[7] Buchstab A. A., Number Theory, Prosveshchenie, 1966 (in Russian)

[8] Ceban D., Syrbu P., “On qusigroups with some minimal idetities”, Studia Universitatis Moldaviae. Stiinte Exacte si Economice, 82:2 (2015), 47–52

[9] Dénes J., Keedwell A. D., Latin Squares and their Applications, Académiai Kiadó, Budapest, 1974 | MR | Zbl

[10] Evans T., “Algebraic structures associated with latin squares and orthogonal arrays”, Congr. Numer., 13 (1975), 31–52 | MR

[11] Keedwell A. D., Shcherbacov V. A., “Construction and properties of $(r,s,t)$-inverse quasigroups, I”, Discrete Math., 266:1–3 (2003), 275–291 | DOI | MR | Zbl

[12] Lindner C. C., Mendelsohn N. S., Sun S. R., “On the construction of Schroeder quasigroups”, Discrete Math., 32:3 (1980), 271–280 | DOI | MR | Zbl

[13] Mal'tsev A. I., Algebraic Systems, Nauka, Moscow, 1976 (in Russian) | MR | Zbl

[14] McCune W., Mace 4, , University of New Mexico, 2007 www.cs.unm.edu/~mccune/prover9/

[15] Mullen G. L., Shcherbacov V. A., “On orthogonality of binary operations and squares”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, no. 2(48), 3–42 | MR | Zbl

[16] Němec P., Kepka T., “$T$-quasigroups, I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 39–49 | MR

[17] Pelling M. J., Rogers D. G., “Stein quasigroups. I: Combinatorial aspects”, Bull. Aust. Math. Soc., 18 (1978), 221–236 | DOI | MR | Zbl

[18] Pflugfelder H. O., Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990 | MR | Zbl

[19] Sade A., “Quasigroupes obéissant á certaines lois”, Rev. Fac. Sci. Univ. Istambul, 22 (1957), 151–184 | MR

[20] Scerbacova A. V., Shcherbacov V. A., About spectrum of $T_2$-quasigroups, Technical report, 2015, arXiv: 1509.00796

[21] Shcherbacov V. A., “On simple $n$-ary medial quasigroups”, Proceedings of Conference Computational Commutative and Non-Commutative Algebraic Geometry, NATO Sci. Ser. F Comput. Syst. Sci., 196, IOS Press, 2005, 305–324 | MR

[22] Shcherbacov V. A., “On structure of finite $n$-ary medial quasigroups and automorphism groups of these quasigroups”, Quasigroups Relat. Syst., 13:1 (2005), 125–156 | MR | Zbl

[23] Shcherbacov V. A., “On definitions of groupoids closely connected with quasigroups”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2007, no. 2(54), 43–54 | MR | Zbl

[24] Shcherbacov V. A., “Quasigroups in cryptology”, Comput. Sci. J. Moldova, 17:2 (2009), 193–228 | MR | Zbl

[25] Syrbu P., Ceban D., “On $\pi$-quasigroups of type $T_1$”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2014, no. 2(75), 36–43 | MR | Zbl

[26] Syrbu P. N., “On $\pi$-quasigroups isotopic to abelian groups”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2009, no. 3(61), 109–117 | MR | Zbl