Lacunary ideal convergence in probabilistic normed space
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study the notion of lacunary I-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary I-limit points and lacunary I-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary I-Cauchy sequences are introduced and studied. Finally, we provided example which shows that our method of convergence in probabilistic normed spaces is more general.
@article{BASM_2016_2_a0,
     author = {Bipan Hazarika and Ayhan Esi},
     title = {Lacunary ideal convergence in probabilistic normed space},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--17},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a0/}
}
TY  - JOUR
AU  - Bipan Hazarika
AU  - Ayhan Esi
TI  - Lacunary ideal convergence in probabilistic normed space
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 3
EP  - 17
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a0/
LA  - en
ID  - BASM_2016_2_a0
ER  - 
%0 Journal Article
%A Bipan Hazarika
%A Ayhan Esi
%T Lacunary ideal convergence in probabilistic normed space
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 3-17
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a0/
%G en
%F BASM_2016_2_a0
Bipan Hazarika; Ayhan Esi. Lacunary ideal convergence in probabilistic normed space. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 3-17. https://geodesic-test.mathdoc.fr/item/BASM_2016_2_a0/

[1] Buck R. C., “The measure theoretic approach to density”, Amer. J. Math., 68 (1946), 560–580 | DOI | MR | Zbl

[2] Çakalli H., “On statistical convergence in topological groups”, Pure Appl. Math. Sci., 43 (1996), 27–31 | MR | Zbl

[3] Çakalli H., “A study on statistical convergence”, Funct. Anal. Approx. Comput., 1:2 (2009), 19–24 | MR | Zbl

[4] Çakalli H., Hazarika B., “Ideal-quasi-Cauchy sequences”, Jour. Ineq. Appl., 2012 (2012), 234, 11 pp. | DOI | MR | Zbl

[5] Caserta A., Maio G. Di., Koc̆inac Lj. D. R., “Statistical convergence in function spaces”, Abstr. Appl. Anal., 2011 (2011), Article ID 420419, 11 pp. | MR

[6] Cheng L. X., Lin G. C., Lan Y. Y., Liu H., “Measure theory of statistical convergence”, Science in China, Ser. A: Math., 51 (2008), 2285–2303 | DOI | MR | Zbl

[7] Connor J., “The statistical and strong $p$-Cesáro convergence of sequences”, Analysis, 8 (1988), 47–63 | DOI | MR | Zbl

[8] Connor J., Swardson M. A., “Measures and ideals of $C^\ast(X)$”, Ann. N.Y. Acad. Sci., 704 (1993), 80–91 | DOI | MR | Zbl

[9] Constantin G., Istratescu I., Elements of Probabilistic Analysis, Kluwer, 1989 | Zbl

[10] Debnath P., “Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces”, Comput. Math. Appl., 63 (2012), 708–715 | DOI | MR | Zbl

[11] Dems K., “On $I$-Cauchy sequences”, Real Anal. Exchange, 30:1 (2004), 123–128 | MR

[12] Esi A., Hazarika B., “$\lambda$-ideal convergence in intuitionistic fuzzy 2-normed linear space”, Jour. Intell. Fuzzy Systems, 24:4 (2013), 725–732 | MR | Zbl

[13] Fast H., “Sur la convergence statistique”, Colloq. Math., 2 (1951), 241–244 | MR | Zbl

[14] Freedman A. R., Sember J. J., Raphael M., “Some Cesaro-type summability spaces”, Proc. London Math. Soc., 37:3 (1978), 508–520 | DOI | MR | Zbl

[15] Fridy J. A., “On statistical convergence”, Analysis, 5 (1985), 301–313 | DOI | MR | Zbl

[16] Fridy J. A., Orhan C., “Lacunary statistical convergence”, Pacific J. Math., 160:1 (1993), 43–51 | DOI | MR | Zbl

[17] Fridy J. A., Orhan C., “Lacunary statistical summability”, J. Math. Anal. Appl., 173 (1993), 497–504 | DOI | MR | Zbl

[18] Hazarika B., “Lacunary $I$-convergent sequence of fuzzy real numbers”, The Pacific Jour. Sci. Techno., 10:2 (2009), 203–206 | MR

[19] Hazarika B., “Fuzzy real valued lacunary $I$-convergent sequences”, Appl. Math. Letters, 25 (2012), 466–470 | DOI | MR | Zbl

[20] Hazarika B., Savas E., “Lacunary statistical convergence of double sequences and some inclusion results in $n$-normed spaces”, Acta Mathematica Vietnamica, 38 (2013), 471–485 | DOI | MR | Zbl

[21] Hazarika B., “Lacunary difference ideal convergent sequence spaces of fuzzy numbers”, Journal of Intelligent and Fuzzy Systems, 25:1 (2013), 157–166 | MR | Zbl

[22] Hazarika B., “On generalized difference ideal convergence in random 2-normed spaces”, Filomat, 26:6 (2012), 1265–1274 | DOI | MR

[23] Hazarika B., Kumar V., Guillén B. L., “Generalized ideal convergence in intuitionistic fuzzy normed linear spaces”, Filomat, 27:5 (2013), 811–820 | DOI | MR | Zbl

[24] Hazarika B., “On ideal convergence in topological groups”, Scientia Magna, 7:4 (2011), 80–86 | MR

[25] Hazarika B., “Ideal convergence in locally solid Riesz spaces”, Filomat (to appear) | MR

[26] Karakus S., “Statistical convergence on probabilistic normed spaces”, Math. Comm., 12 (2007), 11–23 | MR | Zbl

[27] Klement E. P., Mesiar R., Pap E., Triangular Norms, Kluwer, Dordrecht, 2000 | MR | Zbl

[28] Kostyrko P., S̆alát T., Wilczyński W., “$I$-convergence”, Real Anal. Exchange, 26:2 (2000), 669–686 | MR

[29] Kostyrko P., Macaj M., S̆alat T., Sleziak M., “$I$-convergence and Extremal $I$-limit points”, Math. Slovaca, 55 (2005), 443–64 | MR

[30] Kumar K., Kumar V., “On the $I$ and $I^\ast$-Cauchy sequences in probabilistic normed spaces”, Mathematical Sciences, 2:1 (2008), 47–58 | MR

[31] Kumar V., Guillén B. L., “On Ideal Convergence of Double Sequences in Probabilistic Normed Spaces”, Acta Math. Sinica, English Series, 28:8 (2012), 1689–1700, Published online: February 21, 2012 | DOI | MR | Zbl

[32] Lahiri B. K., Das P., “$I$ and $I^\ast$-convergence in topological spaces”, Math. Bohemica, 130 (2005), 153–160 | MR | Zbl

[33] Li J., “Lacunary statistical convergence and inclusion properties between lacunary methods”, Internat. J. Math. Sci., 23:3 (2000), 175–180 | DOI | MR | Zbl

[34] Maio G. Di., Koc̆inac Lj. D. R., “Statistical convergence in topology”, Topology Appl., 156 (2008), 28–45 | DOI | MR | Zbl

[35] Menger K., “Statistical metrics”, Proc. Nat. Acad. Sci. USA, 28 (1942), 535–537 | DOI | MR | Zbl

[36] Miller H. I., “A measure theoretical subsequence characterization of statistical convergence”, Trans. Amer. Math. Soc., 347:5 (1995), 1811–1819 | DOI | MR | Zbl

[37] Mitrinović D. S., Sandor J., Crstici B., Handbook of Number Theory, Kluwer Acad. Publ., Dordrecht–Boston–London, 1996 | MR

[38] Mursaleen M., Mohiuddine S. A., “On ideal convergence in probabilistic normed spaces”, Math. Slovaca, 62:1 (2012), 49–62 | DOI | MR | Zbl

[39] Rahmat M. R. S., “Ideal Convergence on Probabilistic Normed Spaces”, Inter. Jour. Stat. Econ., 3:9 (2009), 67–75 | MR

[40] S̆alát T., “On statistical convergence of real numbers”, Math. Slovaca, 30 (1980), 139–150 | MR | Zbl

[41] S̆alát T., Tripathy B. C., Ziman M., “On some properties of $I$-convergence”, Tatra Mt. Math. Publ., 28 (2004), 279–86 | MR

[42] Schweizer B., Sklar A., “Statistical metric spaces”, Pacific J. Math., 10 (1960), 313–334 | DOI | MR | Zbl

[43] Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, New York–Amsterdam–Oxford, 1983 | MR | Zbl

[44] S̆erstnev A. N., “Random normed spaces: Problems of completeness”, Kazan Gos. Univ. Ucen. Zap., 122, 1962, 3–20 | MR

[45] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloq. Math., 2 (1951), 73–74 | MR

[46] Tripathy B. C., Hazarika B., “$I$-monotonic and $I$-convergent sequences”, Kyungpook Math. J., 51 (2011), 233–239 | DOI | MR | Zbl

[47] Tripathy B. C., Hazarika B., Choudhary B., “Lacunary $I$-convergent sequences”, Real Analysis Exchange Summer Symposium, 2009, 56–57

[48] Tripathy B. C., Hazarika B., Choudhary B., “Lacunary $I$-convergent sequences”, Kyungpook Math. J., 52:4 (2012), 473–482 | DOI | MR | Zbl

[49] Yamancı U., Gürdal M., “On lacunary ideal convergence in random $n$-normed space”, Journal of Mathematics, 2013 (2013), Article ID 868457, 8 pp. | MR | Zbl