On cosets in Steiner loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 118-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete answer to the question of when the cosets of a Steiner subloop W¯ of a Steiner loop V¯ form a partition of V¯. We also determine when W¯ is a normal subloop of V¯.
@article{BASM_2016_1_a9,
     author = {Ale\v{s} Dr\'apal and Terry S. Griggs},
     title = {On cosets in {Steiner} loops},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {118--124},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a9/}
}
TY  - JOUR
AU  - Aleš Drápal
AU  - Terry S. Griggs
TI  - On cosets in Steiner loops
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 118
EP  - 124
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a9/
LA  - en
ID  - BASM_2016_1_a9
ER  - 
%0 Journal Article
%A Aleš Drápal
%A Terry S. Griggs
%T On cosets in Steiner loops
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 118-124
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a9/
%G en
%F BASM_2016_1_a9
Aleš Drápal; Terry S. Griggs. On cosets in Steiner loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 118-124. https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a9/

[1] I. Anderson, Combinatorial Designs: Construction Methods, Ellis Horwood, New York, 1990 | Zbl

[2] C. J. Colbourn, A. Rosa, Triple Systems, Oxford University Press, Oxford, 1999 | MR | Zbl

[3] G. Ge, “Group divisible designs”, Handbook of Combinatorial Designs, second edition, eds. C. J. Colbourn, J. H. Dinitz, Chapman and Hall/CRC Press, 2007, 255–260 | MR | Zbl

[4] H. Hanani, “Balanced incomplete block designs and related designs”, Discrete Math., 11 (1975), 255–369 | DOI | MR | Zbl

[5] P. Kaski, P. R. J. Östergård, S. Topolova, R. Zlatarski, “Steiner triple systems of order 19 and 21 with subsystems of order 7”, Discrete Math., 308 (2008), 2732–2741 | DOI | MR | Zbl

[6] M. Kinyon, K. Pula, P. Vojtěchovský, “Incidence properties of cosets in loops”, J. Combin. Designs, 20 (2012), 179–197 | DOI | MR | Zbl

[7] T. P. Kirkman, “On a problem in combinations”, Cambridge and Dublin Math. J., 2 (1847), 191–204

[8] H. O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990 | MR | Zbl

[9] D. R. Stinson, Y. J. Wei, “Some results on quadrilaterals in Steiner triple systems”, Discrete Math., 105 (1992), 207–219 | DOI | MR | Zbl