Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_1_a4, author = {Anthony B. Evans}, title = {Linear groups that are the multiplicative groups of neofields}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {64--69}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/} }
TY - JOUR AU - Anthony B. Evans TI - Linear groups that are the multiplicative groups of neofields JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 64 EP - 69 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/ LA - en ID - BASM_2016_1_a4 ER -
Anthony B. Evans. Linear groups that are the multiplicative groups of neofields. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 64-69. https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/
[1] Colbourn C. J., Dinitz J. H. (eds), Handbook of combinatorial designs, 2nd ed., Chapman and Hall, CRC, Florida, 2007 | MR | Zbl
[2] Evans A. B., Orthomorphism graphs of groups, Lecture Notes in Mathematics, 1535, Springer-Verlag, Berlin–Heidelberg, 1992 | DOI | MR | Zbl
[3] Evans A. B., “Mutually orthogonal latin squares based on general linear groups”, Des. Codes Cryptogr., 71 (2014), 479–492 | DOI | MR | Zbl
[4] Johnson C. P., “Complete mappings, neofields, and dihedral groups”, J. Miss. Acad. Sci., 31 (1986), 147–152
[5] Keedwell A. D., “Sequenceable groups, generalized complete mappings, neofields and block designs”, Combinatorial mathematics, X (Adelaide, 1982), Lecture Notes in Math., 1036, Springer, Berlin, 1983, 49–71 | DOI | MR
[6] Michler G., Theory of finite simple groups, Cambridge University Press, Cambridge, 2006 | MR | Zbl
[7] Paige L. J., “Neofields”, Duke Math. J., 16 (1949), 39–60 | DOI | MR | Zbl