Linear groups that are the multiplicative groups of neofields
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

A neofield N is a set with two binary operations, addition and multiplication, for which N is a loop under addition with identity 0, the nonzero elements of N form a group under multiplication, and both left and right distributive laws hold. Which finite groups can be the multiplicative groups of neofields? It is known that any finite abelian group can be the multiplicative group of a neofield, but few classes of finite nonabelian groups have been shown to be multiplicative groups of neofields. We will show that each of the groups GL(n,q), PGL(n,q), SL(n,q), and PSL(n,q), q even, q2, can be the multiplicative group of a neofield.
@article{BASM_2016_1_a4,
     author = {Anthony B. Evans},
     title = {Linear groups that are the multiplicative groups of neofields},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {64--69},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/}
}
TY  - JOUR
AU  - Anthony B. Evans
TI  - Linear groups that are the multiplicative groups of neofields
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 64
EP  - 69
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/
LA  - en
ID  - BASM_2016_1_a4
ER  - 
%0 Journal Article
%A Anthony B. Evans
%T Linear groups that are the multiplicative groups of neofields
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 64-69
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/
%G en
%F BASM_2016_1_a4
Anthony B. Evans. Linear groups that are the multiplicative groups of neofields. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 64-69. https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a4/

[1] Colbourn C. J., Dinitz J. H. (eds), Handbook of combinatorial designs, 2nd ed., Chapman and Hall, CRC, Florida, 2007 | MR | Zbl

[2] Evans A. B., Orthomorphism graphs of groups, Lecture Notes in Mathematics, 1535, Springer-Verlag, Berlin–Heidelberg, 1992 | DOI | MR | Zbl

[3] Evans A. B., “Mutually orthogonal latin squares based on general linear groups”, Des. Codes Cryptogr., 71 (2014), 479–492 | DOI | MR | Zbl

[4] Johnson C. P., “Complete mappings, neofields, and dihedral groups”, J. Miss. Acad. Sci., 31 (1986), 147–152

[5] Keedwell A. D., “Sequenceable groups, generalized complete mappings, neofields and block designs”, Combinatorial mathematics, X (Adelaide, 1982), Lecture Notes in Math., 1036, Springer, Berlin, 1983, 49–71 | DOI | MR

[6] Michler G., Theory of finite simple groups, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[7] Paige L. J., “Neofields”, Duke Math. J., 16 (1949), 39–60 | DOI | MR | Zbl