Algebras with parastrophically uncancellable quasigroup equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 41-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 48 parastrophically uncancellable quadratic functional equations with four object variables and two quasigroup operations in two classes: balanced non-Belousov (consists of 16 equations) and non-balanced non-gemini (consists of 32 equations). A linear representation of a group (Abelian group) for a pair of quasigroup operations satisfying one of these parastrophically uncancellable quadratic equations is obtained. As a consequence of these results, a linear representation for every operation of a binary algebra satisfying one of these hyperidentities is obtained.
@article{BASM_2016_1_a3,
     author = {Amir Ehsani and Aleksandar Krape\v{z} and Yuri Movsisyan},
     title = {Algebras with parastrophically uncancellable quasigroup equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {41--63},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a3/}
}
TY  - JOUR
AU  - Amir Ehsani
AU  - Aleksandar Krapež
AU  - Yuri Movsisyan
TI  - Algebras with parastrophically uncancellable quasigroup equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 41
EP  - 63
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a3/
LA  - en
ID  - BASM_2016_1_a3
ER  - 
%0 Journal Article
%A Amir Ehsani
%A Aleksandar Krapež
%A Yuri Movsisyan
%T Algebras with parastrophically uncancellable quasigroup equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 41-63
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a3/
%G en
%F BASM_2016_1_a3
Amir Ehsani; Aleksandar Krapež; Yuri Movsisyan. Algebras with parastrophically uncancellable quasigroup equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 41-63. https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a3/

[1] Aczél J., Belousov V. D., Hosszú M., “Generalized associativity and bisymmetry on quasigroups”, Acta Math. Sci. Hung., 11 (1960), 127–136 | DOI | MR | Zbl

[2] Russian Mathematical Surveys., 20:1 (1965), 75–143 | DOI | MR | Zbl

[3] Belousov V. D., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR

[4] Belousov V. D., Configurations in algebraic nets, Shtiinca, Kishinev, 1979 (in Russian) | MR

[5] Belousov V. D., “Quasigroups with completely reducible balanced identities”, Mat. Issled., 83 (1985), 11–25 (in Russian) | MR | Zbl

[6] Bruck R. H., “Some results in the theory of quasigroups”, Trans. American Math. Soc., 55 (1944), 19–52 | DOI | MR | Zbl

[7] Burris S., Sankappanavar H. P., A course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | DOI | MR | Zbl

[8] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Math., 9, Heldermann Verlag, Berlin, 1990 | MR

[9] Dénes J., Keedwell A. D., Latin squares and their applications, Acadmiai Kiadó, Budapest, 1974 | MR | Zbl

[10] Ehsani A., Movsisyan Yu. M., “Linear representation of medial-like algebras”, Comm. Algebra, 41:9 (2013), 3429–3444 | DOI | MR | Zbl

[11] Fisher R. A., The design of experiments, 8th edition, Oliver Boyd, Edinburgh, 1966

[12] Förg-Rob W., Krapež A., “Equations which preserve the height of variables”, Aequat. Math., 70 (2005), 63–76 | DOI | MR | Zbl

[13] Krapež A., “On solving a system of balanced functional equations on quasigroups III”, Publ. Inst. Math., Nouv. Sér., 26:40 (1979), 145–156 | MR | Zbl

[14] Krapež A., “Functional equations of generalized associativity, bisymmetry, transitivity and distributivity”, Publications de L'Institut Mathematique, 30:44 (1981), 81–87 | MR | Zbl

[15] Krapež A., “Quadratic level quasigroup equations with four variables I”, Publ. Inst. Math., Nouv. Sér., 81:95 (2007), 53–67 | DOI | MR | Zbl

[16] Krapež A., Taylor M. A., “Gemini functional equations on quasigroups”, Publ. Math. (Debrecen), 47:3–4 (1995), 283–292 | MR

[17] Krapež A., Živković D., “Parastrophically equivalent quasigroup equations”, Publ. Inst. Math., Nouv. Sér., 87:101 (2010), 39–58 | DOI | MR | Zbl

[18] Krstić S., Quadratic quasigroup identities, PhD thesis, University of Belgrade, 1985, (accessed May 5, 2015) (in Serbocroatian) http:/elibrary.matf.bg.ac.rs

[19] Movsisyan Yu. M., Introduction to the theory of algebras with hyperidentities, Yerevan State Univ. Press, Yerevan, 1986 (in Russian) | MR

[20] Movsisyan Yu. M., “Hyperidentities in algebras and varieties”, Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | MR | Zbl

[21] Movsisyan Yu. M., “Hyperidentities and hypervarieties”, Sci. Math. Jap., 54 (2001), 595–640 | MR | Zbl

[22] Nazari E., Movsisyan Yu. M., “Transitive modes”, Demonstratio Math., 44:3 (2011), 511–522 | MR | Zbl

[23] Němec P., Kepka T., “$T$-quasigroups I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 39–49 | MR

[24] Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990 | MR | Zbl

[25] Shcherbacov V. A., “Quasigroups in cryptology”, Comp. Sci. J. Moldova, 17:2(50) (2009), 193–228 | MR | Zbl

[26] Toyoda K., “On Axioms of linear functions”, Proc. Imp. Acad. Tokyo Conf., 17 (1941), 211–237 | MR

[27] Ungar A., Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession – The Theory of Gyrogroups and Gyrovector Spaces, Kluwer Academic Publishers, Dordrecht–Boston–London, 2001 | MR | Zbl