Central and medial quasigroups of small order
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 24-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We enumerate central and medial quasigroups of order less than 128 up to isomorphism, with the exception of those quasigroups that are isotopic to C4×C24, C26, C34 or C53. We give an explicit formula for the number of quasigroups that are affine over a finite cyclic group.
@article{BASM_2016_1_a2,
     author = {David Stanovsk\'y and Petr Vojt\v{e}chovsk\'y},
     title = {Central and medial quasigroups of small order},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {24--40},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a2/}
}
TY  - JOUR
AU  - David Stanovský
AU  - Petr Vojtěchovský
TI  - Central and medial quasigroups of small order
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 24
EP  - 40
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a2/
LA  - en
ID  - BASM_2016_1_a2
ER  - 
%0 Journal Article
%A David Stanovský
%A Petr Vojtěchovský
%T Central and medial quasigroups of small order
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 24-40
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a2/
%G en
%F BASM_2016_1_a2
David Stanovský; Petr Vojtěchovský. Central and medial quasigroups of small order. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 24-40. https://geodesic-test.mathdoc.fr/item/BASM_2016_1_a2/

[1] Drápal A., “Group isotopes and a holomorphic action”, Result. Math., 54:3–4 (2009), 253–272 | DOI | MR | Zbl

[2] The GAP Group, GAP – Groups, Algorithms and Programming, Version 4.5.5, , 2012 http://www.gap-system.org

[3] Hillar C. J., Rhea D. L., “Automorphisms of finite abelian groups”, Amer. Math. Monthly, 114 (2007), 917–923 | MR | Zbl

[4] Hou X., “Finite modules over $\mathbb Z[t,t^{-1}]$”, J. Knot Theory Ramifications, 21:8 (2012), 1250079, 28 pp. | DOI | MR | Zbl

[5] Kirnasovsky O. U., “Linear isotopes of small order groups”, Quasigroups and Related Systems, 2:1 (1995), 51–82 | MR | Zbl

[6] Kirnasovsky O. U., Binary and $n$-ary isotopes of groups: fundamental algebraic properties and characterizations, PhD thesis, Kiev (Ukrainian), 2001

[7] Nagy G. P., Vojtěchovský P., LOOPS: Computing with quasigroups and loops in GAP, Version 3.0.0, http://www.math.du.edu/loops

[8] The On-Line Encyclopedia of Integer Sequences, , OEIS Foundation Inc., 2011 http://oeis.org

[9] Smith J. D. H., “Finite equationally complete entropic quasigroups”, Contributions to general algebra, Proc. Klagenfurt Conf. (Klagenfurt, 1978), 1979, 345–356 | MR | Zbl

[10] Smith J. D. H., An introduction to quasigroups and their representations, Chapman Hall/CRC, 2007 | MR | Zbl

[11] Sokhatsky F., “On isotopes of groups, I”, Ukrainian Math. J., 47:10 (1995), 1585–1598 ; “II”, Ukrainian Math. J., 47:12 (1995), 1935–1948 ; “III”, Ukrainian Math. J., 48:2 (1996), 283–293 | DOI | MR | DOI | MR | DOI | MR

[12] Sokhatsky F., Syvakivskij P., “On linear isotopes of cyclic groups”, Quasigroups and Related Systems, 1:1 (1994), 66–76 | MR | Zbl

[13] Stanovský D., “A guide to self-distributive quasigroups, or latin quandles”, Quasigroups and Related Systems, 23:1 (2015), 91–128 | MR | Zbl

[14] Stronkowski M., Stanovský D., “Embedding general algebras into modules”, Proc. Amer. Math. Soc., 138:8 (2010), 2687–2699 | DOI | MR | Zbl

[15] Szendrei Á., “Modules in general algebra”, Proc. Klagenfurt Conf. (1997), Contributions to general algebra, 10, 1998, 41–53 | MR | Zbl