On the absence of finite approximation relative to model completeness in propositional provability logic
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 110-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider the expressibility of formulas in the provability logic GL and related to it questions of the model completeness of system of formulas. We prove the absence of a finite approximation relative to model completeness in GL.
@article{BASM_2015_3_a8,
     author = {Olga Izbash and Andrei Rusu},
     title = {On the absence of finite approximation relative to model completeness in propositional provability logic},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {110--113},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a8/}
}
TY  - JOUR
AU  - Olga Izbash
AU  - Andrei Rusu
TI  - On the absence of finite approximation relative to model completeness in propositional provability logic
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 110
EP  - 113
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a8/
LA  - en
ID  - BASM_2015_3_a8
ER  - 
%0 Journal Article
%A Olga Izbash
%A Andrei Rusu
%T On the absence of finite approximation relative to model completeness in propositional provability logic
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 110-113
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a8/
%G en
%F BASM_2015_3_a8
Olga Izbash; Andrei Rusu. On the absence of finite approximation relative to model completeness in propositional provability logic. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 110-113. https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a8/

[1] Subrata Das., Foundations of Decision-Making Agents: Logic, Probability and Modality, World Scientific Publishing Company, 2008 | MR | Zbl

[2] Boolos G. S., The Logic of Provability, Cambridge University Press, 1995 | MR

[3] Kuznetsov A. V., “On detecting non-deductibility and non-expressibility”, Logical Deduction, Nauka, Moscow, 1979, 5–33 (in Russian)

[4] Magari R., “The diagonalizable algebras”, Boll. Unione Matem. Italiana, 12 (1975), 117–125 | MR | Zbl

[5] Solovay R. M., “Provability interpretations of modal logic”, Israel J. Math., 25 (1975), 287–304 | DOI | MR

[6] Systems Theory Res., 18 (1968), 62–76 | MR

[7] Covalgiu O., “Modeling the classical logic in the 3-valued extension of the provability-intuitionistic logic”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 1990, no. 2(2), 9–15 (in Russian) | MR

[8] Covalgiu O., Ratsa M., “On model completeness for the classes of the functions 3-valued $\Delta$-pseudo-Boolean algebra”, An. Şt. Univ. Ovidius, ser. Matematica, 2 (1994), 76–79 | MR | Zbl

[9] Izbaş O., Rusu A., “On non-tabular $m$-pre-complete classes of formulas in the propositional provability logic”, An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat., 14:1 (2006), 91–98 | MR | Zbl