Third Hankel determinant for the inverse of reciprocal of bounded turning functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the best possible upper bound to the third Hankel determinants for the functions belonging to the class of reciprocal of bounded turning functions using Toeplitz determinants.
@article{BASM_2015_3_a3,
     author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani},
     title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--59},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - D. Vamshee Krishna
AU  - N. Rani
TI  - Third Hankel determinant for the inverse of reciprocal of bounded turning functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 50
EP  - 59
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/
LA  - en
ID  - BASM_2015_3_a3
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A D. Vamshee Krishna
%A N. Rani
%T Third Hankel determinant for the inverse of reciprocal of bounded turning functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 50-59
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/
%G en
%F BASM_2015_3_a3
B. Venkateswarlu; D. Vamshee Krishna; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59. https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/

[1] Ali R. M., “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc. (second series), 26:1 (2003), 63–71 | MR | Zbl

[2] Babalola K. O., “On $H_3(1)$ Hankel determinant for some classes of Uni-valent Functions”, Inequality Theory and Applications, 6 (2010), 1–7

[3] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR | Zbl

[4] Ehrenborg R., “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR | Zbl

[5] Grenander U., Szegö G., Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984 | MR | Zbl

[6] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[7] Layman J. W., “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl

[8] Libera R. J., Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal P$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl

[9] Mac Gregor T. H., “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl

[10] Noor K. I., “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl

[11] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl

[12] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl

[13] Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, AMS Colloquium Publ., 54, Part 1, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[14] Vamshee Krishna D., Venkateswarlu B., Ramreddy T., “Third Hankel determinant for the inverse of a function whose derivative has a positive real part”, Math. Stud., 42:1 (2014), 54–60 | MR | Zbl