Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_3_a3, author = {B. Venkateswarlu and D. Vamshee Krishna and N. Rani}, title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {50--59}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/} }
TY - JOUR AU - B. Venkateswarlu AU - D. Vamshee Krishna AU - N. Rani TI - Third Hankel determinant for the inverse of reciprocal of bounded turning functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 50 EP - 59 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/ LA - en ID - BASM_2015_3_a3 ER -
%0 Journal Article %A B. Venkateswarlu %A D. Vamshee Krishna %A N. Rani %T Third Hankel determinant for the inverse of reciprocal of bounded turning functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 50-59 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/ %G en %F BASM_2015_3_a3
B. Venkateswarlu; D. Vamshee Krishna; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 50-59. https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a3/
[1] Ali R. M., “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc. (second series), 26:1 (2003), 63–71 | MR | Zbl
[2] Babalola K. O., “On $H_3(1)$ Hankel determinant for some classes of Uni-valent Functions”, Inequality Theory and Applications, 6 (2010), 1–7
[3] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR | Zbl
[4] Ehrenborg R., “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR | Zbl
[5] Grenander U., Szegö G., Toeplitz forms and their applications, Second edition, Chelsea Publishing Co., New York, 1984 | MR | Zbl
[6] Janteng A., Halim S. A., Darus M., “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR
[7] Layman J. W., “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl
[8] Libera R. J., Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal P$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl
[9] Mac Gregor T. H., “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl
[10] Noor K. I., “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl
[11] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl
[12] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl
[13] Simon B., Orthogonal polynomials on the unit circle. Part 1. Classical theory, AMS Colloquium Publ., 54, Part 1, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[14] Vamshee Krishna D., Venkateswarlu B., Ramreddy T., “Third Hankel determinant for the inverse of a function whose derivative has a positive real part”, Math. Stud., 42:1 (2014), 54–60 | MR | Zbl