Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_3_a1, author = {Stanislav Ciubotaru}, title = {Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {14--34}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a1/} }
TY - JOUR AU - Stanislav Ciubotaru TI - Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 14 EP - 34 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a1/ LA - en ID - BASM_2015_3_a1 ER -
%0 Journal Article %A Stanislav Ciubotaru %T Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 14-34 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a1/ %G en %F BASM_2015_3_a1
Stanislav Ciubotaru. Rational bases of $GL(2,\mathbb R)$-comitants and of $GL(2,\mathbb R)$-invariants for the planar system of differential equations with nonlinearities of the fourth degree. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 14-34. https://geodesic-test.mathdoc.fr/item/BASM_2015_3_a1/
[1] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl
[2] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Ştiinţa, Kishinev, 1986 (in Russian) | MR
[3] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl
[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996, 36 pp.
[5] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of differential equations”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2003, no. 2(42), 69–86 | MR | Zbl
[6] Amelkin V. V., Lucashevich N. A, Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian)