Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_2_a6, author = {Vladimir A. Emelichev and Kirill G. Kuzmin and Vadim I. Mychkov}, title = {Estimates of stability radius of multicriteria {Boolean} problem with {H\"older} metrics in parameter spaces}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {74--81}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/} }
TY - JOUR AU - Vladimir A. Emelichev AU - Kirill G. Kuzmin AU - Vadim I. Mychkov TI - Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 74 EP - 81 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/ LA - en ID - BASM_2015_2_a6 ER -
%0 Journal Article %A Vladimir A. Emelichev %A Kirill G. Kuzmin %A Vadim I. Mychkov %T Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 74-81 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/ %G en %F BASM_2015_2_a6
Vladimir A. Emelichev; Kirill G. Kuzmin; Vadim I. Mychkov. Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 74-81. https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/
[1] Miettinen K., Nonlinear multiobjective optimization, Kluwer Academic Publishers, Boston, 1999 | MR | Zbl
[2] Ehrgott M., Multicriteria optimization, Springer, Berlin–Heidelberg, 2005 | MR | Zbl
[3] Greenberg H., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, 1998, 97–148 | DOI | MR
[4] Kasperski A., Discrete Optimization with Interval Data, Minmax Regret and Fuzzy Approach, Springer, Berlin, 2008 | MR | Zbl
[5] Sotskov Yu. N., Sotskova N. Yu., Lai T.-C., Werner F., Scheduling under uncertainty, Theory and Algorithms, Belorusskaya nauka, Minsk, 2010
[6] Emelichev V. A., Podkopaev D. P., “On a quantitative measure of stability for a vector problem in integer programming”, Computational Mathematics and Mathematical Physics, 38:11 (1998), 1727–1731 | MR | Zbl
[7] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[8] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of $0$-$1$ programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR | Zbl
[9] Emelichev V. A., Kuzmin K. G., “Stability radius of a vector integer linear programming problem: case of a regular norm in the space of criteria”, Cybernetics and Systems Analysis, 46:1 (2010), 72–79 | DOI | MR | Zbl
[10] Podinovski V. V., Nogin V. D., Pareto-optimal solutions of multicriteria problems, FIZMATLIT, Moscow, 2007 (in Russian)
[11] Bukhtoyarov S. E., Emelichev V. A., “On stability of solutions of a vector variant of one investment problem”, Diskretnyi analiz i issledovanie operatsii, 22:2 (2015), 5–16 (in Russian) | DOI
[12] Emelichev V. A., Korotkov V. V., “Stability analysis of multicriteria Boolean problem in case of Hölder metric in the solutions space”, Vestnik BGU, Ser. 1, 2013, no. 3, 100–103 (in Russian) | MR | Zbl
[13] Emelichev V. A., Ustilko E. V., “Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria”, Prikladnaya Diskretnaya Matematika, 2014, no. 3, 117–123 (in Russian)
[14] Leontev V. K., “Stability in linear discrete problems”, Problems of cybernetics, 35, Nauka, Moscow, 1979, 169–184 (in Russian) | MR
[15] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Applied Mathematics, 58:2 (1995), 169–190 | DOI | MR | Zbl