Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 74-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multiple objective combinatorial linear problem in the situation where parameters of objective functions are exposed to perturbations. We study quantitative characteristic of stability (stability radius) of the problem assuming that there are Hölder metrics in the space of solutions and the criteria space.
@article{BASM_2015_2_a6,
     author = {Vladimir A. Emelichev and Kirill G. Kuzmin and Vadim I. Mychkov},
     title = {Estimates of stability radius of multicriteria {Boolean} problem with {H\"older} metrics in parameter spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {74--81},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/}
}
TY  - JOUR
AU  - Vladimir A. Emelichev
AU  - Kirill G. Kuzmin
AU  - Vadim I. Mychkov
TI  - Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 74
EP  - 81
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/
LA  - en
ID  - BASM_2015_2_a6
ER  - 
%0 Journal Article
%A Vladimir A. Emelichev
%A Kirill G. Kuzmin
%A Vadim I. Mychkov
%T Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 74-81
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/
%G en
%F BASM_2015_2_a6
Vladimir A. Emelichev; Kirill G. Kuzmin; Vadim I. Mychkov. Estimates of stability radius of multicriteria Boolean problem with H\"older metrics in parameter spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 74-81. https://geodesic-test.mathdoc.fr/item/BASM_2015_2_a6/

[1] Miettinen K., Nonlinear multiobjective optimization, Kluwer Academic Publishers, Boston, 1999 | MR | Zbl

[2] Ehrgott M., Multicriteria optimization, Springer, Berlin–Heidelberg, 2005 | MR | Zbl

[3] Greenberg H., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, 1998, 97–148 | DOI | MR

[4] Kasperski A., Discrete Optimization with Interval Data, Minmax Regret and Fuzzy Approach, Springer, Berlin, 2008 | MR | Zbl

[5] Sotskov Yu. N., Sotskova N. Yu., Lai T.-C., Werner F., Scheduling under uncertainty, Theory and Algorithms, Belorusskaya nauka, Minsk, 2010

[6] Emelichev V. A., Podkopaev D. P., “On a quantitative measure of stability for a vector problem in integer programming”, Computational Mathematics and Mathematical Physics, 38:11 (1998), 1727–1731 | MR | Zbl

[7] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[8] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of $0$-$1$ programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR | Zbl

[9] Emelichev V. A., Kuzmin K. G., “Stability radius of a vector integer linear programming problem: case of a regular norm in the space of criteria”, Cybernetics and Systems Analysis, 46:1 (2010), 72–79 | DOI | MR | Zbl

[10] Podinovski V. V., Nogin V. D., Pareto-optimal solutions of multicriteria problems, FIZMATLIT, Moscow, 2007 (in Russian)

[11] Bukhtoyarov S. E., Emelichev V. A., “On stability of solutions of a vector variant of one investment problem”, Diskretnyi analiz i issledovanie operatsii, 22:2 (2015), 5–16 (in Russian) | DOI

[12] Emelichev V. A., Korotkov V. V., “Stability analysis of multicriteria Boolean problem in case of Hölder metric in the solutions space”, Vestnik BGU, Ser. 1, 2013, no. 3, 100–103 (in Russian) | MR | Zbl

[13] Emelichev V. A., Ustilko E. V., “Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria”, Prikladnaya Diskretnaya Matematika, 2014, no. 3, 117–123 (in Russian)

[14] Leontev V. K., “Stability in linear discrete problems”, Problems of cybernetics, 35, Nauka, Moscow, 1979, 169–184 (in Russian) | MR

[15] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Applied Mathematics, 58:2 (1995), 169–190 | DOI | MR | Zbl