Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_1_a5, author = {Alexandru Popa}, title = {On the distinction between one-dimensional {Euclidean} and hyperbolic spaces}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {97--102}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a5/} }
TY - JOUR AU - Alexandru Popa TI - On the distinction between one-dimensional Euclidean and hyperbolic spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 97 EP - 102 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a5/ LA - en ID - BASM_2015_1_a5 ER -
Alexandru Popa. On the distinction between one-dimensional Euclidean and hyperbolic spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 97-102. https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a5/
[1] Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Tracts in Pure and Applied Math., 15, John Wiley and Sons, Inc., New York, 1963, xi+329 pp. | MR
[2] Faber R. L., Foundations of Euclidean and Non-Euclidean Geometry, Marcel Dekker, New York, 1983, 329 pp. | MR | Zbl
[3] Gans D., “Axioms for elliptic geometry”, Canad. J. Math., 4 (1952), 81–92 | MR | Zbl
[4] Klein F., “A comparative review of recent researches in geometry”, Bull. New York Math. Soc., 3 (1893), 215–249 | MR
[5] Klein F., Vorlesungen über nicht-Euklidische Geometrie, Grundlehren Math. Wiss., 26, Springer, 1968, 326 pp. | MR
[6] Rosenfeld B. B., Non-Euclidean Spaces, Nauka, Moscow, 1969, 547 pp. (in Russian)
[7] Yaglom. I. M., A simple non–euclidean geometry and its physical basis, Springer-Verlag, New York, 1969, 307 pp. | MR
[8] Artykbaev A., Sokolov D. D., Geometry in large in flat space-time, Fan, Tashkent, 1991, 180 pp. (in Russian)
[9] Romakina L. N., Geometry of co-Euclidean and co-pseudo-Euclidean planes, Nauchnaya kniga, Saratov, 2008, 280 pp. (in Russian)
[10] Popa A., Analytic Geometry of Homogeneous Spaces, Monograph, 2014, 150 pp. http://sourceforge.net/projects/geomspace/files/Theory/Homogeneous-2014.04.12-en.pdf/download