Primary decomposition of general graded structures
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the primary decomposition in the case of general graded modules – moduloids, a generalization of already done work for general graded rings – anneids. These structures, introduced by Marc Krasner are more general than graded structures of Bourbaki since they do not require the associativity nor the commutativity nor the unitarity in the set of grades. After proving the existence and uniqueness of primary decomposition of moduloids, we breafly turn our attention to Krull's Theorem and to the existence of the primary decomposition of Krasner–Vuković paragraded rings.
@article{BASM_2015_1_a4,
     author = {Emil Ili\'c-Georgijevi\'c and Mirjana Vukovi\'c},
     title = {Primary decomposition of general graded structures},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {87--96},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a4/}
}
TY  - JOUR
AU  - Emil Ilić-Georgijević
AU  - Mirjana Vuković
TI  - Primary decomposition of general graded structures
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 87
EP  - 96
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a4/
LA  - en
ID  - BASM_2015_1_a4
ER  - 
%0 Journal Article
%A Emil Ilić-Georgijević
%A Mirjana Vuković
%T Primary decomposition of general graded structures
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 87-96
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a4/
%G en
%F BASM_2015_1_a4
Emil Ilić-Georgijević; Mirjana Vuković. Primary decomposition of general graded structures. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 87-96. https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a4/

[1] Bourbaki N., Algèbre, Chap. II, 3e édit., Hermann, Paris, 1962 | Zbl

[2] Chadeyras M., Essai d'une théorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi générale que possible, Bull. de la S. M. F., Supplément, Mémoire, 22, Paris, 1970 | MR

[3] Halberstadt E., Théorie artinienne homogène des anneaux gradués à grades non commutatifs réguliers, Thèse doct. sci. math., Arch. orig. Cent. Doc. C. N. R. S., No 5962, Centre National de la Recherche Scientifique, Paris, 1971 | Zbl

[4] Krasner M., “Une généralisation de la notion de corps-corpoíde. Un corpoíde remarquable de la théorie des corps valués”, C. R. Acad. Sci. Paris, 219 (1944), 345–347 | MR | Zbl

[5] Krasner M., “Hypergroupes moduliformes et extramoduliformes”, C. R. Acad. Sci. Paris, 219 (1944), 473–476 | MR | Zbl

[6] Krasner M., “Théorie de la ramification dans les extensions finies des corps valués: Hypergroupe d'inertie et de ramification; théorie extrinsè que de la ramification”, C. R. Acad. Sci. Paris, 220 (1945), 28–30 | MR | Zbl

[7] Krasner M., “Quelques méthodes nouvelles dans la théorie des corps valués complets”, Algèbre et théorie des nombres, Colloque Int. du C. N. R. S., No 24 (Paris , 1949), Edit. C. N. R. S., Paris, 1950 | MR

[8] Krasner M., “Congruences multiplicatives. Squelettes et corpoídes”, Séminaire Krasner 1953-54, v. 1, Secrétariat Math. de la Fac. des Sc., Paris, 1956, exposé No 4 | Zbl

[9] Krasner M., “Théorie élémentaire des corpoídes commutatifs sans torsion”, Séminaire Krasner 1953-54, v. 2, Secrétariat Math. de la Fac. des Sc., Paris, 1956., 1956, exposé No 5 | Zbl

[10] Krasner M., “Anneaux gradués généraux”, Colloque d'Algébre Rennes, 1980, 209–308 | MR | Zbl

[11] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules) I.”, Proc. Japan Acad. Ser. A, 62:9 (1986), 350–352 | MR | Zbl

[12] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules) II”, Proc. Japan Acad. Ser. A, 62:10 (1986), 389–391 | MR | Zbl

[13] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules) III”, Proc. Japan Acad. Ser. A, 63:1 (1987), 10–12 | MR | Zbl

[14] Krasner M., Vuković M., Structures paragraduées (groupes, anneaux, modules), Queen's Papers in Pure and Applied Mathematics, 77, Queen's University, Kingston, Ontario, Canada, 1987 | MR | Zbl

[15] Kumar S. D., Behara S., “Uniqueness of graded primary decomposition of modules graded over finitely generated abelian groups”, Comm. Alg., 39:7 (2011), 2607–2614 | MR | Zbl

[16] Perling M., Kumar S. D., “Primary decomposition over rings graded by finitely generated Abelian groups”, J. Algebra, 318 (2007), 553–561 | MR | Zbl

[17] Vuković M., Structures graduées et paragraduées, Prepublication No 536, l'Institut Fourier, Université de Grenoble I, 2001, 40 pp.

[18] J. Math. Sci., 191:5 (2013), 654–660 | MR | Zbl

[19] Zariski O., Samuel P., Commutative Algebra, v. I, Van Nostrand Company, Princeton, New Jersey, 1965