On fixed point subalgebras of some local algebras over a~field
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fixed point subalgebras of some local algebras obtained as quotients of polynomial algebras over an arbitrary field F with respect to all F-algebra automorphisms are described.
@article{BASM_2015_1_a0,
     author = {Miroslav Kure\v{s}},
     title = {On fixed point subalgebras of some local algebras over a~field},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--12},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a0/}
}
TY  - JOUR
AU  - Miroslav Kureš
TI  - On fixed point subalgebras of some local algebras over a~field
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 3
EP  - 12
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a0/
LA  - en
ID  - BASM_2015_1_a0
ER  - 
%0 Journal Article
%A Miroslav Kureš
%T On fixed point subalgebras of some local algebras over a~field
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 3-12
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a0/
%G en
%F BASM_2015_1_a0
Miroslav Kureš. On fixed point subalgebras of some local algebras over a~field. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 3-12. https://geodesic-test.mathdoc.fr/item/BASM_2015_1_a0/

[1] Bini G., Flamini F., Finite Commutative Rings and Their Applications, Kluwer Academic Publishers, 2002 | MR | Zbl

[2] Ehresmann C., “Les prolongements d'une variété différentiable, I”, CRAS Paris, 233 (1951), 598–600 | MR | Zbl

[3] Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer Verlag, 1993 | MR | Zbl

[4] Krupka D., Janyška J., Lectures on Differential Invariants, Univerzita J. E. Purkyně, Brno, 1990 | MR | Zbl

[5] Kureš M., Mikulski W. M., “Natural operators lifting vector fields to bundles of Weil contact elements”, Czechoslovak Mathematical Journal, 54 (2004), 855–867 | MR | Zbl

[6] Kureš M., “Local approach to higher order contact elements”, Reports on Mathematical Physics, 58:2 (2006), 393–409 | MR

[7] Kureš M., Mikulski W. M., “Natural operators lifting 1-forms to bundles of Weil contact elements”, Bulletin of the Irish Mathematical Society, 49 (2002), 23–41 | MR | Zbl

[8] Kureš M., Sehnal D., “The order of algebras with nontrivial fixed point subalgebras”, Lobachevskii Journal of Mathematics, 25 (2007), 187–196 | MR | Zbl

[9] Kureš M., “Fixed point subalgebras of Weil algebras: from geometric to algebraic questions”, Complex and Differential Geometry, Springer Proceedings of Mathematics, 2011, 183–192 | MR | Zbl

[10] Kureš M., “Finite dimensional factor algebras of $\mathbb F_2[X_1,\dots,X_n]$ and their fixed point subalgebras”, Open Journal of Applied Sciences, 2, Suppl. (World Congress on Engineering and Technology, Beijing, 2012) (2012), 212–214

[11] Mac Lane S., “The genesis of mathematical structures, as exemplified in the work of Charles Ehresmann”, Cahiers de Toplogie et Géométrie Différentielle Catégoriques, 21:4 (1980), 353–365 | MR | Zbl

[12] Olver P. J., Applications of Lie Group to Differentianl Equations, Springer, 1993 | MR

[13] Shafarevich I. R., “Degeneration of semisimple algebras”, Communications in Algebra, 29:9 (2001), 3943–3960 | MR | Zbl

[14] Villamayor O. E., “Separable algebras and Galois extensions”, Osaka Journal of Mathematics, 4 (1967), 161–171 | MR | Zbl

[15] Weil A., “Généralisation des fonctions abeliénnes”, Journal de Mathématiques Pures et Apliquées, 17 (1938), 47–87 | Zbl

[16] Weil A., “Théorie des points proches sur les variétés différentiables”, Géométrie différentielle, Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, 111–117 | MR | Zbl

[17] Wikipedia contributors, Infintely near point, Wikipedia, The Free Encyklopedia, September 9, 2012