Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_3_a8, author = {G. B. Belyavskaya and T. V. Popovich}, title = {Near-totally conjugate orthogonal quasigroups}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {89--96}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a8/} }
TY - JOUR AU - G. B. Belyavskaya AU - T. V. Popovich TI - Near-totally conjugate orthogonal quasigroups JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 89 EP - 96 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a8/ LA - en ID - BASM_2014_3_a8 ER -
G. B. Belyavskaya; T. V. Popovich. Near-totally conjugate orthogonal quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 89-96. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a8/
[1] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups and Related Systems, 13:1 (2005), 25–73 | MR
[2] Belyavskaya G. B., Popovich T. V., “Conjugate sets of loops and quasigroups. DC-quasigroups”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2012, no. 1(59), 21–31 | MR | Zbl
[3] Belyavskaya G. B., Popovich T. V., “Totally conjugate orthogonal quasigroups and complete graphs”, Journal of Mathematical Sciences, 185:2 (2012), 184–191 | DOI | MR | Zbl
[4] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete mathematics, 77 (1989), 29–50 | DOI | MR | Zbl
[5] Bennett F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete mathematics, 36 (1981), 117–137 | DOI | MR | Zbl
[6] Bennett F. E., “On conjugate orthogonal idempotent Latin squares”, Ars. combinatorica, 19 (1985), 37–50 | MR
[7] Bennett F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congressus Numerantium, 23 (1979), 179–192 | MR | Zbl
[8] Bennett F. E., Zhang Hantao, “Latin squares with self-orthogonal conjugates”, Discrete mathematics, 284 (2004), 45–55 | DOI | MR | Zbl
[9] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Congressus Numerantium, 35 (1982), 169–180 | MR | Zbl
[10] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Congressus Numerantium, 13, Proc. Conf. Algebraic Aspects of Combinatorics (1975), 31–52 | MR
[11] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Univ., 5 (1975), 191–196 | DOI | MR | Zbl
[12] Lindner C. C., Mendelsohn E., Mendelsohn N. S., Wolk B., “Orthogonal Latin square graphs”, J. Graph Theory, 3 (1979), 325–328 | DOI | MR
[13] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory A, 25 (1978), 117–127 | DOI | MR | Zbl