Algorithms for solving stochastic discrete optimal control problems on networks
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the stationary stochastic discrete optimal control problem with average cost criterion. We formulate this problem on networks and propose polynomial time algorithms for determining the optimal control by using a linear programming approach.
@article{BASM_2014_3_a7,
     author = {Dmitrii Lozovanu and Maria Capcelea},
     title = {Algorithms for solving stochastic discrete optimal control problems on networks},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {80--88},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a7/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Maria Capcelea
TI  - Algorithms for solving stochastic discrete optimal control problems on networks
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 80
EP  - 88
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a7/
LA  - en
ID  - BASM_2014_3_a7
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Maria Capcelea
%T Algorithms for solving stochastic discrete optimal control problems on networks
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 80-88
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a7/
%G en
%F BASM_2014_3_a7
Dmitrii Lozovanu; Maria Capcelea. Algorithms for solving stochastic discrete optimal control problems on networks. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 80-88. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a7/

[1] Bellman R., “Functional equations in the theory of dynamic programming, XI-Limit theorems”, Rand. Circolo Math. Palermo, 8:3 (1959), 343–345 | DOI | MR

[2] Lozovanu D., Pickl S., “Algorithmic solution of discrete control problems on stochastic networks”, Procceedings of CTW09 Workshop on Graphs and Combinatorial Optimization, Paris, 2009, 221–224

[3] Puterman M., Markov Decision Processes: Stochastic Dynamic Programming, John Wiley, New Jersey, 2005

[4] Khachian L. G., “Polynomial time algorithm in linear programming”, USSR Computational Mathematics and Mathematical Phisics, 20:1 (1980), 51–68 | MR | Zbl