Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_3_a5, author = {Andrei Perjan and Galina Rusu}, title = {Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {49--64}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/} }
TY - JOUR AU - Andrei Perjan AU - Galina Rusu TI - Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 49 EP - 64 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/ LA - en ID - BASM_2014_3_a5 ER -
%0 Journal Article %A Andrei Perjan %A Galina Rusu %T Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 49-64 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/ %G en %F BASM_2014_3_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/
[1] D'Acunto B., “Hyperbolic-parabolic singular perturbations”, Rend. Mat. Appl, 1:1 (1993), 229–254 | MR | Zbl
[2] Esham B. F., Weinacht R. J., “Hyperbolic-parabolic singular perturbations for scalar nonlinearities”, Appl. Anal., 29:1–2 (1988), 19–44 | DOI | MR | Zbl
[3] Evans L. C., Partial Differential Equations, American Mathematical Society, 1998 | MR | Zbl
[4] Gallay Th., Raugel G., “Scaling variables and asymptotic expansions in damped wave equations”, J. Differential Equations, 150:1 (1998), 42–97 | DOI | MR | Zbl
[5] Gobbino M., “Singular perturbation hyperbolic-parabolic for degenerate nonlinear equations of Kirchhoff type”, Nonlinear Anal., 44:3 (2001), 361–374 | DOI | MR | Zbl
[6] Hajouj B., “Perturbations singulières d'équations hyperboliques du second ordre non linéaires”, Ann. Math. Blaise Pascal, 7:1 (2000), 1–22 | MR | Zbl
[7] Horodnii M. F., “Stability of bounded solutions of differential equations with small parameter in a Banach space”, Ukrainian Math. J., 55:7 (2003), 1071–1085 | DOI | MR
[8] Hsiao G., Weinacht R., “Singular perturbations for a semilinear hyperbolic equation”, SIAM J. Math. Anal., 14:6 (1983), 1168–1179 | DOI | MR | Zbl
[9] Jager E. M., “Singular perturbations of hyperbolic type”, Nieuw Arch. Wisk. (3), 23:2 (1975), 145–172 | MR | Zbl
[10] Kubesov N. A., “Asymptotic behavior of the solution of a mixed problem with large initial velocity for a singularly perturbed equation that degenerates into a parabolic equation”, Vestnik Nats. Akad. Respub. Kazakhstan, 1994, no. 1, 71–74 (in Russian) | MR
[11] Lions J. L., Control optimal de systemes gouvernés par des équations aux dérivées partielles, Dunod Gauthier-Villars, Paris, 1968 | MR
[12] Milani A., “On singular perturbations for IBV problems”, Ann. Fac. Sci. Toulouse Math. (6), 9:3 (2000), 467–468 | DOI | MR
[13] Moroşanu Gh., Nonlinear Evolution Equations and Applications, Ed. Acad. Române, Bucureşti, 1988, 340 pp. | MR | Zbl
[14] Perjan A., “Linear singular perturbations of hyperbolic-parabolic type”, Bul. Acad. Stiinte Repub. Mold. Mat., 2003, no. 2(42), 95–112 | MR | Zbl
[15] Perjan A., “Limits of solutions to the semilinear wave equations with small parameter”, Bul. Acad. Stiinte Repub. Mold. Mat., 2006, no. 1(50), 65–84 | MR | Zbl
[16] Perjan A., Rusu G., “Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitzian nonlinearities”, Asymptotic Analysis, 74:3–4 (2011), 135–165 | MR | Zbl
[17] Zlamal M., “The mixed problem for hyperbolic equations with a small parameter”, Czechoslovak Math. J., 10(85) (1960), 83–120 (in Rusian) | MR