Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of solutions to the problem $$ \left\{ \begin{array}{l} \varepsilon u''_\varepsilon(t)+u'_\varepsilon(t)+A(t)u _\varepsilon(t)=f_\varepsilon(t),\quad t\in(0,T),\\ u_\varepsilon(0)=u_{0\varepsilon},\quad u'_\varepsilon(0)=u_{1\varepsilon}, \end{array} \right. $$ in the Hilbert space H as ε0, where A(t), t(0,), is a family of linear self-adjoint operators.
@article{BASM_2014_3_a5,
     author = {Andrei Perjan and Galina Rusu},
     title = {Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {49--64},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/}
}
TY  - JOUR
AU  - Andrei Perjan
AU  - Galina Rusu
TI  - Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 49
EP  - 64
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/
LA  - en
ID  - BASM_2014_3_a5
ER  - 
%0 Journal Article
%A Andrei Perjan
%A Galina Rusu
%T Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 49-64
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/
%G en
%F BASM_2014_3_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 49-64. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a5/

[1] D'Acunto B., “Hyperbolic-parabolic singular perturbations”, Rend. Mat. Appl, 1:1 (1993), 229–254 | MR | Zbl

[2] Esham B. F., Weinacht R. J., “Hyperbolic-parabolic singular perturbations for scalar nonlinearities”, Appl. Anal., 29:1–2 (1988), 19–44 | DOI | MR | Zbl

[3] Evans L. C., Partial Differential Equations, American Mathematical Society, 1998 | MR | Zbl

[4] Gallay Th., Raugel G., “Scaling variables and asymptotic expansions in damped wave equations”, J. Differential Equations, 150:1 (1998), 42–97 | DOI | MR | Zbl

[5] Gobbino M., “Singular perturbation hyperbolic-parabolic for degenerate nonlinear equations of Kirchhoff type”, Nonlinear Anal., 44:3 (2001), 361–374 | DOI | MR | Zbl

[6] Hajouj B., “Perturbations singulières d'équations hyperboliques du second ordre non linéaires”, Ann. Math. Blaise Pascal, 7:1 (2000), 1–22 | MR | Zbl

[7] Horodnii M. F., “Stability of bounded solutions of differential equations with small parameter in a Banach space”, Ukrainian Math. J., 55:7 (2003), 1071–1085 | DOI | MR

[8] Hsiao G., Weinacht R., “Singular perturbations for a semilinear hyperbolic equation”, SIAM J. Math. Anal., 14:6 (1983), 1168–1179 | DOI | MR | Zbl

[9] Jager E. M., “Singular perturbations of hyperbolic type”, Nieuw Arch. Wisk. (3), 23:2 (1975), 145–172 | MR | Zbl

[10] Kubesov N. A., “Asymptotic behavior of the solution of a mixed problem with large initial velocity for a singularly perturbed equation that degenerates into a parabolic equation”, Vestnik Nats. Akad. Respub. Kazakhstan, 1994, no. 1, 71–74 (in Russian) | MR

[11] Lions J. L., Control optimal de systemes gouvernés par des équations aux dérivées partielles, Dunod Gauthier-Villars, Paris, 1968 | MR

[12] Milani A., “On singular perturbations for IBV problems”, Ann. Fac. Sci. Toulouse Math. (6), 9:3 (2000), 467–468 | DOI | MR

[13] Moroşanu Gh., Nonlinear Evolution Equations and Applications, Ed. Acad. Române, Bucureşti, 1988, 340 pp. | MR | Zbl

[14] Perjan A., “Linear singular perturbations of hyperbolic-parabolic type”, Bul. Acad. Stiinte Repub. Mold. Mat., 2003, no. 2(42), 95–112 | MR | Zbl

[15] Perjan A., “Limits of solutions to the semilinear wave equations with small parameter”, Bul. Acad. Stiinte Repub. Mold. Mat., 2006, no. 1(50), 65–84 | MR | Zbl

[16] Perjan A., Rusu G., “Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitzian nonlinearities”, Asymptotic Analysis, 74:3–4 (2011), 135–165 | MR | Zbl

[17] Zlamal M., “The mixed problem for hyperbolic equations with a small parameter”, Czechoslovak Math. J., 10(85) (1960), 83–120 (in Rusian) | MR