The endomorphism semigroup of a~free dimonoid of rank~1
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 30-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all endomorphisms of a free dimonoid of rank 1 and construct a semigroup which is isomorphic to the endomorphism semigroup of this free dimonoid. Also, we give an abstract characteristic for the endomorphism semigroup of a free dimonoid of rank 1.
@article{BASM_2014_3_a3,
     author = {Yurii V. Zhuchok},
     title = {The endomorphism semigroup of a~free dimonoid of rank~1},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--37},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a3/}
}
TY  - JOUR
AU  - Yurii V. Zhuchok
TI  - The endomorphism semigroup of a~free dimonoid of rank~1
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 30
EP  - 37
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a3/
LA  - en
ID  - BASM_2014_3_a3
ER  - 
%0 Journal Article
%A Yurii V. Zhuchok
%T The endomorphism semigroup of a~free dimonoid of rank~1
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 30-37
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a3/
%G en
%F BASM_2014_3_a3
Yurii V. Zhuchok. The endomorphism semigroup of a~free dimonoid of rank~1. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 30-37. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a3/

[1] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] Loday J.-L., Ronco M. O., “Trialgebras and families of polytopes”, Contemp. Math., 346 (2004), 369–398 | DOI | MR | Zbl

[3] Novikov B. V., “Semigroups of cohomological dimension one”, J. Algebra, 204:2 (1998), 386–393 | DOI | MR | Zbl

[4] Pozhidaev A. P., “0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras”, Siberian Math. J., 50:6 (2009), 1070–1080 | DOI | MR | Zbl

[5] Zhuchok A. V., “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl

[6] Zhuchok Yu. V., “Representations of ordered dimonoids by binary relations”, Asian-Eur. J. Math., 7:1 (2014), 1450006, 13 pp. | DOI | MR

[7] Mashevitzky G., Schein B. M., “Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup”, Proc. Amer. Math. Soc., 131:6 (2003), 1655–1660 | DOI | MR | Zbl

[8] Formanek E., “A question of B. Plotkin about the semigroup of endomorphisms of a free group”, Proc. Amer. Math. Soc., 130 (2002), 935–937 | DOI | MR | Zbl

[9] Zhuchok A. V., “Free dimonoids”, Ukrain. Math. J., 63:2 (2011), 196–208 | DOI | MR | Zbl

[10] Usenko V. M., “Semigroups of endomorphisms of free groups”, Izv. Gomelskogo universiteta, 2000, no. 3(16), Problems in Algebra (Gomel), 182–185 (in Russian) | Zbl

[11] Gluskin L. M., “Ideals of semigroups”, Mat. Sb., 55(97):4 (1961), 421–448 (in Russian) | MR | Zbl

[12] Shevrin L. N., “Densely embedded ideals of semigroups”, Mat. Sb., 79(121):3(7) (1969), 425–432 (in Russian) | MR | Zbl