Bi-deniable public-key encryption protocol which is secure against active coercive adversary
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 23-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a practical public-key deniable encryption protocol based on the RSA cryptosystem. The protocol begins with the authentication of the both parties participating in the protocol (the sender and the receiver of secret message). The authentication is performed by exchanging random values and the RSA signatures to them. Due to this stage of the protocol the security against coercive attacks of the active adversary is provided. After the mutual authentication the protocol specifies performing the deniable encryption of the secret message, like the probabilistic ciphering of some fake message by using the RSA encryption algorithm. The novelty of the proposed protocol consists in using random values as single-use public keys that are used to generate single-use shared key with which the sender encrypts the secret message and the receiver discloses it. The coercive adversary provided with private keys of the both parties can only disclose the fake message. Proving that the sent cryptogram contains a message different from the fake one is computationally infeasible for the adversary.
@article{BASM_2014_3_a2,
     author = {A. A. Moldovyan and N. A. Moldovyan and V. A. Shcherbacov},
     title = {Bi-deniable public-key encryption protocol which is secure against active coercive adversary},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--29},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a2/}
}
TY  - JOUR
AU  - A. A. Moldovyan
AU  - N. A. Moldovyan
AU  - V. A. Shcherbacov
TI  - Bi-deniable public-key encryption protocol which is secure against active coercive adversary
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 23
EP  - 29
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a2/
LA  - en
ID  - BASM_2014_3_a2
ER  - 
%0 Journal Article
%A A. A. Moldovyan
%A N. A. Moldovyan
%A V. A. Shcherbacov
%T Bi-deniable public-key encryption protocol which is secure against active coercive adversary
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 23-29
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a2/
%G en
%F BASM_2014_3_a2
A. A. Moldovyan; N. A. Moldovyan; V. A. Shcherbacov. Bi-deniable public-key encryption protocol which is secure against active coercive adversary. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 23-29. https://geodesic-test.mathdoc.fr/item/BASM_2014_3_a2/

[1] Canetti R., Dwork C., Naor M., Ostrovsky R., “Deniable Encryption”, Proceedings Advances in Cryptology, CRYPTO 1997, Lectute Notes in Computer Science, 1294, Springer-Verlag, Berlin–Heidelberg–New York, 1997, 90–104 | DOI | MR | Zbl

[2] Ishai Yu., Kushilevits E., Ostrovsky R., “Efficient Non-interactive Secure Computation”, Advances in Cryptology, EUROCRYPT 2011, Lectute Notes in Computer Science, 6632, Springer-Verlag, Berlin–Heidelberg–New York, 2011, 406–425 | DOI | MR | Zbl

[3] Bo Meng, “A Secure Internet Voting Protocol Based on Non-interactive Deniable Authentication Protocol and Proof Protocol that Two Ciphertexts are Encryption of the Same Plaintext”, Journal of Networks, 4:5 (2009), 370–377 | DOI

[4] O'Neil A., Peikert C., Waters B., “Bi-Deniable Public-Key Encryption”, Advances in Cryptology, CRYPTO 2011, Lectute Notes in Computer Science, 6841, Springer-Verlag, Berlin–Heidelberg–New York, 2011, 525–542 | DOI | Zbl

[5] Klonowski M., Kubiak P., Kutylowsk M., “Practical Deniable Encryption”, SOFSEM: Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and Practice of Computer Science (Novy Smokovec, Slovakia, January 19–25, 2008), 599–609 | Zbl

[6] Bo Meng, Jiang Qing Wang, “A Receiver Deniable Encryption Scheme”, Proceedings of the International Symposium on Information Processing, ISOP'09 (Huangshan, China, August 21–23, 2009), 254–257

[7] Rivest R. L., Shamir A., Adleman L. M., “A Method for Obtaining Digital Signatures and Public Key Cryptosystems”, Communications of the ACM, 21:2 (1978), 120–126 | DOI | MR | Zbl

[8] Gordon J., “Strong primes are easy to find”, Advances in cryptology, EUROCRYPT'84, LNCS, 209, Springer-Verlag, 1985, 216–223 | MR

[9] Moldovyan N. A., “An approach to shorten digital signature length”, Computer Science Journal of Moldova, 14:3(42) (2006), 390–396 | MR | Zbl

[10] Moldovyan A. A., Moldovyan N. A., Shcherbacov V. A., “Short signatures from difficulty of the factoring problem”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2013, no. 2(72)–3(73), 27–36 | MR | Zbl