A~semi-isometric isomorphism on a~ring of matrices
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let (R,ξ) be a pseudonormed ring and Rn be a ring of matrices over the ring R. We prove that if 1γ,σ and 1γ+1σ1, then the function ηξ,γ,σ is a pseudonorm on the ring Rn. Let now φ:(R,ξ)(R,ξ) be a semi-isometric isomorphism of pseudonormed rings. We prove that Φ:(Rn,ηξ,γ,σ)(Rn,ηξ,γ,σ) is a semi-isometric isomorphism too for all 1γ,σ such that 1γ+1σ1.
@article{BASM_2014_2_a8,
     author = {Svetlana Aleschenko},
     title = {A~semi-isometric isomorphism on a~ring of matrices},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {74--84},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a8/}
}
TY  - JOUR
AU  - Svetlana Aleschenko
TI  - A~semi-isometric isomorphism on a~ring of matrices
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 74
EP  - 84
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a8/
LA  - en
ID  - BASM_2014_2_a8
ER  - 
%0 Journal Article
%A Svetlana Aleschenko
%T A~semi-isometric isomorphism on a~ring of matrices
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 74-84
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a8/
%G en
%F BASM_2014_2_a8
Svetlana Aleschenko. A~semi-isometric isomorphism on a~ring of matrices. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 74-84. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a8/

[1] Aleschenko S. A., Arnautov V. I., “Quotient rings of pseudonormed rings”, Buletinul Academiei de Ştiinte a Republicii Moldova, Matematica, 2006, no. 2(51), 3–16 | MR | Zbl

[2] Aleschenko S. A., Arnautov V. I., “Properties of one-sided ideals of pseudonormed rings when taking the quotient rings”, Buletinul Academiei de Ştiinte a Republicii Moldova, Matematica, 2008, no. 3(58), 3–8 | MR | Zbl

[3] Hardy G. H., Littlewood J. E., Polia G., Inequalities, Cambridge University Press, 1934 | Zbl

[4] Aleschenko S. A., “Constructions of pseudonormed rings which keep a semi-isometric isomorphism”, Studia Universitatis Moldaviae, Ştiinţe exacte şi economice, 2013, no. 7(67), 19–27