Irreducible triangulations of the M\"obius band
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete list of irreducible triangulations is identified on the Möbius band.
@article{BASM_2014_2_a5,
     author = {Mar{\'\i}a-Jos\'e Ch\'avez and Serge Lawrencenko and Antonio Quintero and Mar{\'\i}a-Trinidad Villar},
     title = {Irreducible triangulations of the {M\"obius} band},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--50},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a5/}
}
TY  - JOUR
AU  - María-José Chávez
AU  - Serge Lawrencenko
AU  - Antonio Quintero
AU  - María-Trinidad Villar
TI  - Irreducible triangulations of the M\"obius band
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 44
EP  - 50
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a5/
LA  - en
ID  - BASM_2014_2_a5
ER  - 
%0 Journal Article
%A María-José Chávez
%A Serge Lawrencenko
%A Antonio Quintero
%A María-Trinidad Villar
%T Irreducible triangulations of the M\"obius band
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 44-50
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a5/
%G en
%F BASM_2014_2_a5
María-José Chávez; Serge Lawrencenko; Antonio Quintero; María-Trinidad Villar. Irreducible triangulations of the M\"obius band. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 44-50. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a5/

[1] Barnette D., “Generating the triangulations of the projective plane”, J. Comb. Theory Ser. B, 33 (1982), 222–230 | DOI | MR | Zbl

[2] Barnette D. W., Edelson A. L., “All 2-manifolds have finitely many minimal triangulations”, Isr. J. Math., 67:1 (1989), 123–128 | DOI | MR | Zbl

[3] Boulch A., De Verdière É. Colin, Nakamoto A., “Irreducible triangulations of surfaces with boundary”, Graphs Comb., 29:6 (2013), 1675–1688 | DOI | MR | Zbl

[4] Chen B., Kwak J. H., Lawrencenko S., “Weinberg bounds over nonspherical graphs”, J. Graph Theory, 33:4 (2000), 220–236 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Chen B., Lawrencenko S., “Structural characterization of projective flexibility”, Discrete Math., 188:1–3 (1998), 233–238 | DOI | MR | Zbl

[6] Ukr. Geom. Sb., 30 (1987), 52–62 | DOI | MR | Zbl | Zbl

[7] Ukr. Geom. Sb., 32 (1989), 71–84 | DOI | MR | Zbl

[8] Lawrencenko S., Negami S., “Irreducible triangulations of the Klein bottle”, J. Comb. Theory Ser. B, 70:2 (1997), 265–291 | DOI | MR | Zbl

[9] Negami S., “Diagonal flips in pseudo-triangulations on closed surfaces”, Discrete Math., 240:1–3 (2001), 187–196 | DOI | MR | Zbl

[10] Steinitz E., Rademacher H., Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer, Berlin, 1976, (Reprint of the original 1934 edition) | MR | Zbl

[11] Sulanke T., Counts of triangulations of surfaces, electronic only, , 2005 http://hep.physics.indiana.edu/~tsulanke/graphs/surftri/counts.txt

[12] Sulanke T., “Note on the irreducible triangulations of the Klein bottle”, J. Comb. Theory Ser. B, 96:6 (2006), 964–972 | DOI | MR | Zbl

[13] Sulanke T., Generating irreducible triangulations of surfaces, Cornell University Library, 2006, 11 pp., electronic only, arXiv: math/0606687v1

[14] Sulanke T., Irreducible triangulations of low genus surfaces, Cornell University Library, 2006, 1 fig., 5 tabs., 10 pp., electronic only, arXiv: math/0606690v1